

MONITORING AND TECHNICAL SERVICES DIVISION

Annual Air Quality Monitoring Network Report 2022

POSTED FOR PUBLIC VIEWING: MAY 23, 2023 SUBMITTED FOR EPA REVIEW: JUNE 30, 2023

Authors:

David Medina, PhD

Senior Chemist, Ambient Air Quality Section

Adam Canter

Senior Meteorologist, Meteorology and Modeling Section

Melin Lu

Senior Chemist, Ambient Air Quality Assurance Section

David Sodeman, PhD

Chief, Monitoring and Technical Services

Monitoring and Technical Services Division 10124 Old Grove Road, San Diego, CA 92131

(left intentionally blank)

Table of Contents

CHAPTER 1: INTRODUCTION - ANNUAL NETWORK REPORT REQUIREMENTS	1-1
Section 1.1 Federal Citation	1-1
Section 1.2 Purpose, Scope, and Organization of Annual Network Report	1-2
Section 1.3 Public Comments Information	1-2
Section 1.3.1 District Contact Information	1-2
Section 1.3.2 Additional Air Pollution Information	1-3
Section 1.4 Description of Monitoring	1-3
Section 1.4.1 Network Design Theory	1-4
Section 1.5 San Diego Air Basin Description	1-4
Section 1.5.1 San Diego Topography	1-5
Section 1.5.2 San Diego Climate	1-5
Section 1.5.3 Population	1-5
CHAPTER 2: OVERVIEW OF THE AIR QUALITY MONITORING NETWORK	2-1
Section 2.1 Executive Summary of the Air Quality Monitoring Network	2-1
Section 2.1.1 Overview of the Pollutant Monitoring Network	
Section 2.1.2 Overview of the Gaseous Pollutant Monitoring Network	2-7
Section 2.1.3 Overview of the Pb-TSP Sampling Network	
Section 2.1.4 Overview of the PM _{2.5} Sampling Network	
Section 2.1.5 Overview of the PM ₁₀ Sampling Network	2-10
Section 2.1.6 Overview of the PAMS Network	2-11
Section 2.2 Summary of the Minimum Monitoring Requirements for the SDAB	2-12
Section 2.3 Summary of Minimum Monitoring Requirements (Data)	
Section 2.3.1 Suitability for Comparison to the NAAQS (Data)-Criteria Pollutants	
Section 2.3.2 Quality Control/Quality Assurance (Data)-Criteria Pollutants	2-14
Section 2.3.3 Reporting/Certifying (Data)-Criteria Pollutants	2-14
Section 2.3.4 Unsuitability for Comparison to the NAAQS (Data)-non-Criteria Pollutants &	Other
	2-14
Section 2.3.5 Quality Control/Quality Assurance (Data)-non-Criteria Pollutants & Others	
Section 2.3.6 Reporting/Certifying (Data)-non-Criteria Pollutants & Others	
Section 2.4 Recent Planned and Unplanned Changes to the Network	
Section 2.4.1 Station Changes (Relocations, Shutdowns, and Additions)	
Section 2.4.1.1 Relocations	
Section 2.4.1.2 Station Shutdowns (Temporary or Permanent):	2-16
Section 2.4.1.3 Station Additions	
Section 2.4.2 Monitor/Sampler/Equipment Replacements, Shutdowns, and Additions	2-16
Section 2.4.2.1 Replacements	
Section 2.4.2.2 Shutdowns	2-16
Section 2.4.2.3 Additions	2-16
Section 2.4.2.4 Other	2-17
Section 2.5 List of Public Comments to this Report and the District Response(s)	
CHAPTER 3: OZONE (O ₃)	
Section 3.1 Ozone Introduction	
Section 3.2 Ozone Minimum Monitoring Requirements	3-3

Section 3.2.1 Ozone Minimum Monitoring Requirements-Design Value Criteria (8-Hr)	3-3
Section 3.2.2 Ozone Minimum Monitoring Requirements-Maximum Concentration Site Design	
Value	
Section 3.2.3 Ozone Minimum Monitoring Requirements-Ozone Season	
Section 3.2.4 Ozone Minimum Monitoring Requirements-Ncore & PAMS	
Section 3.2.5 Ozone Minimum Monitoring Requirements-Summary	
Section 3.3 Ozone Suitability for Comparison to the NAAQS	
Section 3.4 Ozone Concentrations for San Diego	
Section 3.4.1 Ozone Concentrations for San Diego-for the Last 20 Years	
Section 3.4.2 Ozone Concentrations for San Diego-by Site for the Year	
Section 3.4.3 Ozone Concentrations for San Diego-by Site for Design Value	
CHAPTER 4: NITROGEN DIOXIDE (NO ₂) AND REACTIVE OXIDES OF NITROGEN (NO _Y)	
Section 4.1 Nitrogen Dioxide and Reactive Oxides of Nitrogen Introduction	
Section 4.2 Nitrogen Dioxide Minimum Monitoring Requirements	
Section 4.2.1 Nitrogen Dioxide Minimum Monitoring Requirements -Near-road	
Section 4.2.1.1 Nitrogen Dioxide Minimum Monitoring Requirements -Near-road (first site)	
Section 4.2.1.2 Nitrogen Dioxide Minimum Monitoring Requirements -Near-road (second si	
Section 4.2.1.3 Nitrogen Dioxide Minimum Monitoring Requirements -Near-road (summary	4 -3
Section 4.2.2 Nitrogen Dioxide Minimum Monitoring Requirements-Area-wide	
Section 4.2.3 Nitrogen Dioxide Minimum Monitoring Requirements-Regional Administrator	
Section 4.2.4 Minimum Monitoring Requirements for true-NO ₂ , PAMS	
Section 4.2.5 Reactive Oxides of Nitrogen Minimum Monitoring Requirements for Ncore & PA	AMS
Section 4.2.6 NO ₂ , true-NO ₂ , & NO _y Minimum Monitoring Requirements-Summary	
Section 4.3 Nitrogen Dioxide Suitability for Comparison to the NAAQS	
Section 4.4 Nitrogen Dioxide Concentrations for San Diego	
Section 4.4.1 Nitrogen Dioxide Concentrations for San Diego-for the Last 20 Years	
Section 4.4.2 Nitrogen Dioxide Concentrations for San Diego-by Site for the Year	
Section 4.4.3 Nitrogen Dioxide Concentrations for San Diego-by Site for the Design Value	
CHAPTER 5: CARBON MONOXIDE (CO)	
Section 5.1 Carbon Monoxide Introduction	
Section 5.2 Carbon Monoxide Minimum Monitoring Requirements	
Section 5.2.1 Carbon Monoxide Minimum Monitoring Requirements-Near-road	
Section 5.2.2 Carbon Monoxide Minimum Monitoring Requirements-Regional Administrator.	
Section 5.2.3 Carbon Monoxide Minimum Monitoring Requirements-Ncore	
Section 5.2.4 Carbon Monoxide Minimum Monitoring Requirements-State (SIP)	
Section 5.2.5 Carbon Monoxide Minimum Monitoring Requirements-Summary	
Section 5.3 Carbon Monoxide Suitability for Comparison to the NAAQS	
Section 5.4 Carbon Monoxide Concentrations for San Diego	
Section 5.4.1 Carbon Monoxide Concentrations for San Diego-for the Last 20 years	
Section 5.4.2 Carbon Monoxide Concentrations for San Diego-by Site for the Year	
CHAPTER 6: SULFUR DIOXIDE (SO ₂)	
Section 6.1 Sulfur Dioxide Introduction	
Section 6.2 Sulfur Dioxide Minimum Monitoring Requirements	
Section 6.2.1 Sulfur Dioxide Minimum Monitoring Requirements-Ncore	6-3

Section 6.2.2 Sulfur Dioxide Minimum Monitoring Requirements-Ambient	6-3
Section 6.2.3 Sulfur Dioxide Minimum Monitoring Requirements-Summary	6-4
Section 6.3 Sulfur Dioxide Suitability for Comparison to the NAAQS	6-5
Section 6.4 Sulfur Dioxide Concentrations for San Diego	
Section 6.4.1 Sulfur Dioxide Concentrations for San Diego-for the Last 20 Years	6-5
Section 6.4.2 Sulfur Dioxide Concentrations for San Diego-by Site for the Design Value	
CHAPTER 7: LEAD (PB)	
Section 7.1 Lead Introduction	
Section 7.2 Lead Minimum Monitoring Requirements	7-3
Section 7.2.1 Lead Minimum Monitoring Requirements-Source (non-Airport) & Source (Ai	
	- /
Section 7.2.2 Lead Minimum Monitoring Requirements-Special Study (Airport)	
Section 7.2.3 Lead Minimum Monitoring Requirements-Regional Administrator	
Section 7.2.4 Lead Minimum Monitoring Requirements-QA Collocation & Filter Submittal	
Section 7.2.5 Lead Minimum Monitoring Requirements-Summary	7-6
Section 7.3 Lead Suitability for Comparison to the NAAQS	
Section 7.3.1 Lead Suitability for Comparison to the NAAQS – Operating Frequency	7-6
Section 7.4 Lead Concentrations for San Diego	
Section 7.4.1 Lead Concentrations for San Diego-for the Last 20 Years	7-7
Section 7.4.2 Lead Concentrations for San Diego-by Site for the Year	7-8
CHAPTER 8: PARTICULATE MATTER 2.5 µM (PM _{2.5})	
Section 8.1 PM _{2.5} Introduction	
Section 8.2 PM _{2.5} Manual Minimum Monitoring Requirements	8-4
Section 8.2.1 PM _{2.5} Manual Minimum Monitoring Requirements-Design Criteria (24-Hr. &	Annual
Average)	8-4
Section 8.2.2 PM _{2.5} Manual Minimum Monitoring Requirements-State (SIP)	8-5
Section 8.2.3 PM _{2.5} Manual Minimum Monitoring Requirements-Site of Expected Maximum	
Concentration (24-Hr & Annual Average)	
Section 8.2.4 PM _{2.5} Manual Minimum Monitoring Requirements-Near-road	8-6
Section 8.2.5 PM _{2.5} Manual Minimum Monitoring Requirements-Site of Poor Air Quality	
Section 8.2.6 PM _{2.5} Manual Minimum Monitoring Requirements-Ncore	8-7
Section 8.2.7 PM _{2.5} Manual Minimum Monitoring Requirements- QA Collocation	
Section 8.2.8 PM _{2.5} Manual Minimum Monitoring Requirements-Summary	
Section 8.3 PM _{2.5} Continuous Minimum Monitoring Requirements	
Section 8.3.1 PM _{2.5} Continuous Minimum Monitoring Requirements-Ambient	
Section 8.3.2 PM _{2.5} Continuous Minimum Monitoring Requirements-Collocation with Manual Continuous Minimum Monitoring Requirements Collocation William Manual Continuous Minimum Monitoring Requirements Collocation Minimum Minimum Monitoring Requirements Collocation Minimum	
Section 8.3.3 PM _{2.5} Continuous Minimum Monitoring Requirements-Ncore	8-10
Section 8.3.4 PM _{2.5} Continuous Minimum Monitoring Requirements-Collocation	
Section 8.3.4.1 PM _{2.5} Continuous Minimum Monitoring Requirements- Collocation with	
Section 8.3.4.2 PM _{2.5} Continuous Minimum Monitoring Requirements- QA Collocation w	
Continuous	
Section 8.3.5 PM _{2.5} Continuous Minimum Monitoring Requirements-Summary	
Section 8.4 PM _{2.5} Speciation Minimum Monitoring Requirements	
Section 8.4.1 PM _{2.5} Speciation Minimum Monitoring Requirements-Ambient	8-12
· · · · · · · · · · · · · · · · · · ·	

Section 8.4.2 PM _{2.5} Speciation Minimum Monitoring Requirements-Ncore	8-12
Section 8.4.3 PM _{2.5} Speciation Minimum Monitoring Requirements-Summary	8-13
Section 8.5 PM _{2.5} Suitability for Comparison to the NAAQS	8-13
Section 8.5.1 PM _{2.5} Manual Suitability for Comparison to the NAAQS	8-13
Section 8.5.2 PM _{2.5} Continuous Unsuitability for Comparison to the NAAQS	
Section 8.5.3 PM _{2.5} Speciation Unsuitability for Comparison to the NAAQS	
Section 8.6 PM _{2.5} Manual Operating Schedule	
Section 8.7 PM _{2.5} Manual Concentrations for San Diego	
Section 8.7.1 PM _{2.5} Manual Concentrations for San Diego-for the Last 20 Years	
Section 8.7.2 PM _{2.5} Manual Concentrations for San Diego-by Site for the Year	
Section 8.7.3 PM _{2.5} Manual Concentrations for San Diego-by Site for the Design Value	
Section 8.7.4 PM _{2.5} Manual Concentrations for San Diego-by Site for the Design Value	
Average)	
Section 8.8 PM _{2.5} Continuous Concentrations for San Diego	8-20
Section 8.8.1 PM _{2.5} Continuous Concentrations for San Diego-by Site for the Year (24-1	Hr &
Annual Average)	8-20
Section 8.8.2 PM _{2.5} Continuous Concentrations for San Diego-by Site for the Design Va	ılue (24-Hr
& Annual Average)	8-21
CHAPTER 9: PARTICULATE MATTER 10 µM (PM10)	9-1
Section 9.1 PM ₁₀ Introduction	9-1
Section 9.2 PM ₁₀ Minimum Monitoring Requirements	9-3
Section 9.2.1 PM ₁₀ Minimum Monitoring Requirements-Ambient	9-3
Section 9.2.2 PM ₁₀ Minimum Monitoring Requirements-Ncore	
Section 9.2.3 PM ₁₀ Manual Minimum Monitoring Requirements-QA Collocation	
Section 9.2.4 PM ₁₀ Minimum Monitoring Requirements-Summary	
Section 9.3 PM ₁₀ Suitability for Comparison to the NAAQS	9-5
Section 9.3.1 PM ₁₀ Suitability for Comparison to the NAAQS – Equipment & Siting	9-5
Section 9.3.2 PM ₁₀ Suitability for Comparison to the NAAQS – Sampling Frequency	9-5
Section 9.4 PM ₁₀ Concentrations for San Diego	9-6
Section 9.4.1 PM ₁₀ Concentrations for San Diego-for the Last 20 Years	9-6
Section 9.4.2 PM ₁₀ Concentrations for San Diego – by Site at Standard Conditions (STI	
Year (24-Hr & Annual Average)	
Section 9.4.3 PM ₁₀ Concentrations for San Diego – by Site at Local Conditions (LC) for	the Year
CHAPTER 10: NATIONAL CORE (NCORE)	10-1
Section 10.1 Ncore Introduction	
Section 10.1.1 Ncore Minimum Monitoring Requirements	
Section 10.1.2 PM ₁₀ Minimum Monitoring Requirements-Ambient	
Section 10.2 Ncore Suitability for Comparison to the NAAQS	
Section 10.3 Ncore Concentrations	
CHAPTER 11: PHOTOCHEMICAL ASSESSMENT MONITORING STATIONS (PAMS)	
Section 11.1 PAMS Introduction	
Section 11.2 PAMS Minimum Monitoring Requirements	
Section 11.2.1 PAMS Minimum Monitoring Requirements-Equipment	
Section 11.2.2 PAMS Minimum Monitoring Requirements-Sampling Season	
Section 11.3 PAMS Sampling Frequency & Equipment	11-4

APPENDICES

APPENDIX A: SITE DESCRIPTION INTRODUCTION	A- 1
APPENDIX B: ALPINE STATION DESCRIPTION	
APPENDIX C: CAMP PENDLETON STATION DESCRIPTION	
APPENDIX D: CHULA VISTA STATION DESCRIPTION	
APPENDIX E: DONOVAN STATION DESCRIPTION	
APPENDIX F: KEARNY VILLA ROAD STATION DESCRIPTION	
APPENDIX G: LEXINGTON ELEMENTARY SCHOOL STATION DESCRIPTION	
APPENDIX H: RANCHO CARMEL DRIVE STATION DESCRIPTION	
APPENDIX I: McClean – Palomar Airport Station Description	
APPENDIX J: SHERMAN ELEMENTARY SCHOOL STATION DESCRIPTION	

List of Tables

Table 2-1 List of Network Sites	2-2
Table 2-2 Air Monitoring Sites with Associated Monitors/Samplers & Sample Frequency	2-4
Table 2-3 Gaseous Pollutants Monitoring Network	
Table 2-4 Lead Sampling Network	2-8
Table 2-5 PM _{2.5} Sampling Network	2-9
Table 2-6 PM ₁₀ Sampling Network	2-10
Table 2-7 PAMS Sampling Network	2-11
Table 2-8 Summary of Minimum Monitoring Requirements	2-13
Table 3-1 Ozone State and Federal Standards for the Year	3-1
Table 3-2 Ozone Monitoring Network	
Table 3-3 Ozone Minimum Monitoring Requirements-Design Value Criteria (8-Hr)	3-3
Table 3-4 Ozone Minimum Monitoring Requirements-Maximum Concentration Site Design Value	
Table 3-5 Ozone Minimum Monitoring Requirements-Ozone Sampling Season	3-4
Table 3-6 Ozone Minimum Monitoring Requirements-PAMS	3-5
Table 3-7 Ozone Minimum Monitoring Requirements-Summary	3-5
Table 3-8 Ozone Suitability for Comparison to the NAAQS- Sampling Equipment	3-6
Table 3-9 Ozone Concentrations for San Diego-for the Last 20 Years, 2002-2022	3-6
Table 3-10 Ozone Concentrations for San Diego-by Site for the Year, 2022	3-7
Table 3-11 Ozone Concentrations for San Diego-by Site for Design Value, 2020-2022	3-8
Table 4-1 Nitrogen Dioxide State and National Standards for the Year*	
Table 4-2 Nitrogen Dioxide & Reactive Oxides of Nitrogen Monitoring Network	4-2
Table 4-3 Nitrogen Dioxide Minimum Monitoring Requirements -Near-road	4-3
Table 4-4 Nitrogen Dioxide Minimum Monitoring Requirements -Near-road (second site) Matrix	4-4
Table 4-5 Common Air Pollution Related Health Issues in the South Region of San Diego	4-6
Table 4-6 Nitrogen Dioxide Minimum Monitoring Requirements -Near-road (summary)	4-7
Table 4-7 Nitrogen Dioxide Minimum Monitoring Requirements-Area-wide	4-7
Table 4-8 Nitrogen Dioxide Minimum Monitoring Requirements-Regional Administrator	4-8
Table 4-9 Minimum Monitoring Requirements for true-NO ₂ , PAMS	4-8
Table 4-10 Reactive Oxides of Nitrogen Minimum Monitoring Requirements-PAMS & Ncore	4-9
Table 4-11 NO ₂ , true-NO ₂ , & NO _y Minimum Monitoring Requirements-Summary	4-9
Table 4-12 Nitrogen Dioxide & Reactive Oxides of Nitrogen Sampling Equipment	4-10
Table 4-13 Nitrogen Dioxide Concentrations for San Diego-for the Last 20 Years, 2002-2022	4-10
Table 4-14 Nitrogen Dioxide Concentrations for San Diego- by Site for the Year, 2022	4-11
Table 4-15 Nitrogen Dioxide Concentrations for San Diego-by Site for the Design Value, 2020-20	22
Table 5-1 Carbon Monoxide State and National Standards for the Year	
Table 5-2 Carbon Monoxide Monitoring Network	
Table 5-3 Carbon Monoxide Minimum Monitoring Requirements-Near-road	
Table 5-4 Carbon Monoxide Minimum Monitoring Requirements-Regional Administrator	
Table 5-5 Carbon Monoxide Minimum Monitoring Requirements-Ncore	
Table 5-6 Carbon Monoxide Minimum Monitoring Requirements-State (SIP)	
Table 5-7 Carbon Monoxide Minimum Monitoring Requirements-Summary	
Table 5-8 Carbon Monoxide Suitability for Comparison to the NAAQS-Sampling Equipment	5-5

Table 5-9 Carbon Monoxide Concentrations for San Diego-for the Last 20 Years, 2002-2022	5-5
Table 5-10 Carbon Monoxide Concentrations for San Diego-by Site for the Year, 2022	5-6
Table 6-1 Sulfur Dioxide State and National Standards for the Year	6-1
Table 6-2 Sulfur Dioxide Monitoring Network	6-2
Table 6-3 Sulfur Dioxide Minimum Monitoring Requirements-Ncore	6-3
Table 6-4 Sulfur Dioxide Minimum Monitoring Requirements – 2020 EPA NEI SO ₂	6-4
Table 6-5 Sulfur Dioxide Minimum Monitoring Requirements-Ambient	
Table 6-6 Sulfur Dioxide Minimum Monitoring Requirements-Summary	6-4
Table 6-7 Sulfur Dioxide Suitability for Comparison to the NAAQS-Sampling Equipment	6-5
Table 6-8 Sulfur Dioxide Concentrations for San Diego-for the Last 20 Years, 2002-2022	6-5
Table 6-9 Sulfur Dioxide Concentrations for San Diego-by Site for the Design Value, 2020-2022	6-6
Table 7-1 Lead State and National Standards for the Year	
Table 7-2 Lead Sampling Network (regulatory collection and analysis)	7-2
Table 7-3 Lead Minimum Monitoring Requirements-Source (non-Airport) based on the 2020 NEI	7-3
Table 7-4 Lead Minimum Monitoring Requirements-Source (Airport) based on the 2020 NEI	7-3
Table 7-5 Lead Minimum Monitoring Requirements – Airport (Special Study) Results	7-4
Table 7-6 Lead Minimum Monitoring Requirements-Regional Administrator	7-5
Table 7-7 Lead Minimum Monitoring Requirements-QA Collocation & Filter Submittal to EPA	7-5
Table 7-8 Lead Minimum Monitoring Requirements-Summary	7-6
Table 7-9 Lead Suitability for Comparison to the NAAQS-Sampling Equipment	7-6
Table 7-10 Lead Suitability for Comparison to the NAAQS-Sampling Equipment	7-7
Table 7-11 Lead Concentrations for San Diego-for the Last 20 Years, 2002-2022	
Table 7-12 Lead Concentrations for San Diego-by Site for the Year, 2022	7-8
Table 8-1 PM _{2.5} State and National Standards for the Year	8-1
Table 8-2 PM _{2.5} Sampling Network	8-2
Table 8-3 PM _{2.5} Manual Minimum Monitoring Requirements-Design Criteria (Annual Average)	
Table 8-4 PM _{2.5} Manual Minimum Monitoring Requirements-Design Criteria (24-Hr)	
Table 8-5 PM _{2.5} Manual Minimum Monitoring Requirements-Ambient	
Table 8-6 PM _{2.5} Manual Minimum Monitoring Requirements- State (SIP)	8-5
Table 8-7 PM _{2.5} Manual Minimum Monitoring Requirements-Site of Expected Maximum Concentration	ation
(Annual Average) & 24-Hr	
Table 8-8 PM _{2.5} Manual Minimum Monitoring Requirements-Near-road	8-7
Table 8-9 PM _{2.5} Manual Minimum Monitoring Requirements-Site of Poor Air Quality	
Table 8-10 PM _{2.5} Manual Minimum Monitoring Requirements-Ncore	8-8
Table 8-11 PM _{2.5} Manual Minimum Monitoring Requirements- QA Collocation	8-8
Table 8-12 PM _{2.5} Manual Minimum Monitoring Requirements-Summary	
Table 8-13 PM _{2.5} Continuous Minimum Monitoring Requirements-Ambient	8-9
Table 8-14 PM _{2.5} Continuous Minimum Monitoring Requirements-Collocation with Manual	
Table 8-15 PM _{2.5} Continuous Minimum Monitoring Requirements-Ncore	8-10
Table 8-16 PM _{2.5} Continuous Minimum Monitoring Requirements-Collocation	
Table 8-17 PM _{2.5} Continuous Minimum Monitoring Requirements-Summary	8-11
Table 8-18 PM _{2.5} Speciation Minimum Monitoring Requirements-Ambient	8-12
Table 8-19 PM _{2.5} Speciation Minimum Monitoring Requirements-Ncore	
Table 8-20 PM _{2.5} Speciation Minimum Monitoring Requirements-Summary	8-13
Table 8-21 PM _{2.5} Manual Suitability for Comparison to the NAAQS – Sampling Equipment	
Table 8-22 PM _{2.5} Continuous Unsuitability for Comparison to the NAAQS – Sampling Equipment	

Table 8-23 PM _{2.5} Speciation Unsuitability for Comparison to the NAAQS – Sampling Equipment	. 8-14
Table 8-24 PM _{2.5} Operating Schedule-for All PM _{2.5} Instruments	. 8-15
Table 8-25 PM _{2.5} Manual Operating Schedule-for Manual Samplers Collocated with Continuous	
Samplers (DV-24-hr)	. 8-15
Table 8-26 PM _{2.5} Manual Operating Schedule-Ncore	. 8-15
Table 8-27 PM _{2.5} Speciation Operating Schedule-Ncore	. 8-16
Table 8-28 PM _{2.5} Manual Concentrations for San Diego-for the Last 20 Years (24-Hr), 2002-2022	. 8-16
Table 8-29 PM _{2.5} Manual Concentrations for San Diego-by Site for the Year (24-Hr & Annual Aver	rage)
2022	
Table 8-30 PM _{2.5} Manual Concentrations for San Diego-by Site for the Design Value (24-Hr), 2020)_
2022	
Table 8-31 PM _{2.5} Manual Concentrations for San Diego-by Site for the Design Value (Annual Aver	age),
2020-2022	
Table 8-32 PM _{2.5} Continuous Concentrations for San Diego-by Site for the Year (24-Hr & Annual	
Average), 2022	. 8-20
Table 8-33 PM _{2.5} Continuous Concentrations for San Diego-by Site for the Design Value (24-Hr &	
Annual Average), 2020-2022	. 8-21
Table 9-1 PM ₁₀ State and National Standards for the Year	
Table 9-2 PM ₁₀ Sampling Network	
Table 9-3 PM ₁₀ Minimum Monitoring Requirement-Design Criteria for the Year, 2022 (24-Hr)	9-3
Table 9-4 PM ₁₀ Minimum Monitoring Requirements-Ambient	
Table 9-5 PM ₁₀ Minimum Monitoring Requirements-Ncore	
Table 9-6 PM ₁₀ Manual Minimum Monitoring Requirements-Collocation	
Table 9-7 PM ₁₀ Minimum Monitoring Requirements-Summary	
Table 9-8 PM ₁₀ Suitability for Comparison to the NAAQS, Equipment & Siting	9-5
Table 9-9 PM ₁₀ Suitability for Comparison to the NAAQS – Sampling Frequency, 2022	
Table 9-10 PM ₁₀ Concentrations for San Diego – for the Last 20 Years, 2002-2022	
Table 9-11 PM ₁₀ Concentrations for San Diego-by Site at Standard Conditions (STD) for the Year,	
	9-7
Table 9-12 PM ₁₀ Concentrations for San Diego – by Site at Local Conditions (LC) for the Year, 202	229-9
Table 10-1 Ncore Minimum Monitoring Requirements-Equipment & Summary	
Table 10-2 Ncore Suitability for Comparison to the NAAQS-Frequency & Equipment	. 10-3
Table 10-3 Ncore Concentrations for PM _{10-2.5} (Pmcoarse)	. 10-4
Table 10-4 Ncore Concentrations for CO-TLE	
Table 10-5 Ncore Concentrations for SO ₂ -TLE	. 10-4
Table 10-6 Ncore Concentrations for NO _y -NO	. 10-4
Table 10-7 Ncore Concentrations for NO ₂	
Table 11-1 PAMS Sampling Network	. 11-2
Table 11-2 PAMS Minimum Sampling Requirements-Equipment & Summary	. 11-4
Table 11-3 PAMS Minimum Monitoring Requirements-Minimum Sampling Season	
Table 11-4 PAMS Sampling Equipment	
Table 11-5 PAMS VOC Parameter Codes	. 11-6
Table 11-6 PAMS Carbonyls Parameter Codes	
Table A-1 Relationship between Site Types and Scales or Representativeness	
Table A-2 Summary of Definitions in the Site Description Template	A-2
Table A-3 Summary of Probe Monitoring Paths	

Table B-1 General Site Information	. B-1
Table B-2 Alpine – Gaseous Pollutants Monitor Designations + Other	. B-2
Table B-3 Alpine – Particulate Pollutants Monitor Designations	. B-3
Table B-4 Alpine – Meteorology Equipment Designations + Other	. B-4
Table B-5 Alpine – Distance the Equipment are from Influences	. B-5
Table C-1 General Site Information	
Table C-2 Camp Pendleton – Gaseous Pollutants Monitor Designations + Other	. C-2
Table C-3 Camp Pendleton – Particulate Pollutants Monitor Designations	. C-3
Table C-4 Camp Pendleton – Meteorological Equipment Designations + Other	. C-4
Table C-5 Camp Pendleton – Distance the Equipment are from Influences	
Table D-1 General Site Information	.D-1
Table D-2 Chula Vista – Gaseous Pollutants Monitor Designations + Other	.D-2
Table D-3 Chula Vista – Particulate Pollutants Monitor Designations	. D-3
Table D-4 Chula Vista – Other Pollutants Monitor Designations	. D-4
Table D-5 Chula Vista – Meteorological Equipment Designations + Other	. D-5
Table D-6 Chula Vista – Distance the Equipment are from Influences	.D-6
Table E-1 General Site Information	E-1
Table E-2 Donovan – Gaseous Pollutants Monitor Designations + Other	E-2
Table E-3 Donovan – Particulate Pollutants Monitor Designations	E-3
Table E-4 Donovan – Other Pollutants Monitor Designations	E-4
Table E-5 Donovan – Other Additional Pollutants Monitor Designations	E-5
Table E-6 Donovan – Meteorological Equipment Monitor Designations + Other	E-6
Table E-7 Donovan – Distance the Equipment are from Influences	E-7
Table F-1 General Site Information	F-1
Table F-2 Kearny Villa Road – Gaseous Pollutants Monitor Designations + Other	F-2
Table F-3 Kearny Villa Road – Particulate Pollutants Monitor Designations	
Table F-4 Kearny Villa Road – Meteorological Equipment Designations + Other	
Table F-5 Kearny Villa Road – Meteorological Equipment (Additional) Designations	
Table F-6 Kearny Villa Road – Distance the Equipment are from Influences	
Table G-1 General Site Information	
Table G-2 Lexington Elementary School – Gaseous Pollutants Monitor Designations + Other	
Table G-3 Lexington Elementary School – Particulate Pollutants Monitor Designations	
Table G-4 Lexington Elementary School – Particulate Pollutants Monitor Designations (Cont.)	. G-4
Table G-5 Lexington Elementary School – Other Pollutants Monitor Designations	
Table G-6 Lexington Elementary School – Other Pollutants Monitor (Additional) Designations	
Table G-7 Lexington Elementary School – Meteorological Equipment Monitor Designations + Othe	
Table G-8 Lexington Elementary School – Meteorological Equipment (Additional) Designations	
Table G-9 Lexington Elementary School – Distance the Equipment are from Influences	
Table H-1 General Site Information	
Table H-2 Rancho Carmel Drive – Gaseous Pollutants Monitor Designations + Other	
Table H-3 Rancho Carmel Drive – Particulate Pollutants Monitor Designations	
Table H-4 Rancho Carmel Drive – Meteorological Equipment Designations + Other	
Table H-5 Rancho Carmel Drive – Distance the Equipment are from Influences	
Table I-1 General Site Information.	
Table I-2 Palomar Airport – Particulate Pollutants Monitor Designations	
Table I-3 Palomar Airport – Distance the Equipment are from Influences	I-3

Table J-1 General Site Information	J-1
Table J-2 Sherman Elementary School – Gaseous Pollutants Monitor Designations + Other	
Table J-3 Sherman Elementary School – Particulate Pollutants Monitor Designations	
Table J-4 Sherman Elementary School – Other Pollutants Monitor Designations	
Table J-5 Sherman Elementary School – Meteorological Equipment Designations + Other	J-5
Table J-6 Sherman Elementary School – Distance the Equipment are from Influences	J-6

List of Figures	
Figure 2.1 San Diego APCD Air Quality Monitoring Network	2-3
Figure 3.1 Ozone Network Map	
Figure 3.2 Ozone Concentrations for San Diego-for the Last 20 Years Graph	
Figure 3.3 Ozone Concentrations for San Diego-by Site for the Year Graph	
Figure 3.4 Ozone Concentrations for San Diego-by Site for Design Value Graph	
Figure 4.1 Nitrogen Dioxide & NO _y Network Map	
Figure 4.2 Nitrogen Dioxide Concentrations for San Diego-for the Last 20 Years Graph	
Figure 4.3 Nitrogen Dioxide Concentrations for San Diego-by Site for the Year Graph	
Figure 4.4 Nitrogen Dioxide Concentrations for San Diego-by Site for the Design Value Graph	
Figure 5.1 Carbon Monoxide Network Map	
Figure 5.2 Carbon Monoxide Concentrations for San Diego-for the Last 20 Years Graph	
Figure 5.3 Carbon Monoxide Concentrations for San Diego-by Site for the Year Graph	
Figure 6.1 Sulfur Dioxide Network Map	
Figure 6.2 Sulfur Dioxide Concentrations for San Diego-for the Last 20 Years Graph	
Figure 6.3 Sulfur Dioxide Concentrations for San Diego-by Site for the Design Value Graph	
Figure 7.1 Lead Network Map	7-1
Figure 7.2 Lead Concentrations for San Diego-for the Last 20 Years	7-7
Figure 7.3 Lead Concentrations for San Diego-by Site for the Year Graph	7-8
Figure 8.1 PM _{2.5} Network Map	
Figure 8.2 PM2.5 Manual Concentrations for San Diego-for the Last 20 Years (24-Hr) Graph	8-16
Figure 8.3 PM _{2.5} Manual Concentrations for San Diego-by Site for the Year (24-Hr & Annual Aver	age)
Graph	
Figure 8.4 PM _{2.5} Manual Concentrations for San Diego-by Site for the Design Value (24-Hr) Graph	
Figure 8.5 PM _{2.5} Manual Concentrations for San Diego-by Site for the Design Value (Annual Average)	
Graph	
Figure 8.6 PM _{2.5} Continuous Yearly 24-Hr & Annual Average Measurements by Site Graph	8-21
Figure 8.7 PM _{2.5} Continuous Concentrations for San Diego-by Site for the Design Value (24-Hr &	
Annual Average) Graph	
Figure 9.1 PM ₁₀ Overall Map	
Figure 9.2 PM ₁₀ Concentrations for San Diego-for the Last 20 Years Graph	9-7
Figure 9.3 PM ₁₀ Concentrations for San Diego – by Site at Standard Conditions (STD) for the Year	
Figure 9.4 PM ₁₀ Concentrations for San Diego – by Site at Local Conditions (LC) for the Year Gra	
(24-Hr & Annual Average)	
Figure 10.1 Ncore Network Map	
Figure 11.1 PAMS (Carbonyls and VOCs) Network Map	
Figure A.1 Distance of PM samplers to nearest traffic lane	
Figure B.1 Alpine – Picture of the Location of the Station	
Figure B.2 Alpine – Pictures (Directional) from the Rooftop	
Figure C.1 Camp Pendleton – Picture of the Location of the Station	
Figure C.2 Camp Pendleton – Pictures (Directional) from the Rooftop	
Figure D.1 Chula Vista – Pictures of the Location of the Station	
Figure D.2 Chula Vista – Pictures (Directional) from the Ground	
Figure F.1 Donovan – Picture of the Location	E-1

Figure E.2 Donovan – Pictures (Directional) from the Rooftop	.E-8
Figure F.1 Kearny Villa Road – Picture of the Location	.F-1
Figure F.2 Kearny Villa Road – Pictures (Directional) from the Rooftop	.F-7
Figure G.1 Lexington Elementary School – Picture of the Location	G-1
Figure G.2 Lexington Elementary School – Pictures (Directional) from the Rooftop	3-10
Figure H.1 Rancho Carmel Drive – Picture of the Location of the Station	H-1
Figure H.2 Rancho Carmel Drive—Pictures (Directional) from the Ground*	H-6
Figure H.3 Rancho Carmel Drive– Gas Inlet	
Figure I.1 Palomar Airport – Picture of the Location	
Figure I.2 Palomar Airport – Pictures (Directional) from the Ground*	
Figure J.1 Sherman Elementary School – Picture of the Location	
Figure J.2 Sherman Elementary – Pictures (Directional) form the rooftop	

<u>Chapter 1: Introduction – Annual Network Report Requirements</u>

Section 1.1 Federal Citation

In 2007, the U.S. Environmental Protection Agency (EPA) finalized amendments to the ambient air monitoring regulations. These amendments: revised the technical requirements for certain types of sites, programs, and analyzers; added pollutants and programs; and specified sampling frequencies. Monitoring agencies are required to submit annual monitoring network reports, conduct network assessments every five years, perform quality assurance activities, and, in certain instances, establish new monitoring programs. The regulations from Title 40, Part 58, Section 10(a) of the Code of Federal Regulations (40 CFR 58.10, (a)(1)) state that:

The State, or where applicable local, agency shall adopt and submit to the Regional Administrator an annual monitoring network plan which shall provide for the establishment and maintenance of an air quality surveillance system that consists of a network of [State or Local Air Monitoring Stations] SLAMS monitoring stations including [Federal Reference Method]FRM, [Federal Equivalence Method]FEM, and [Approved Regional Method] ARM monitors that are part of SLAMS, [National Core] Ncore stations, [Speciation Trends Network] STN stations, State speciation stations, [Special Purpose Monitor] SPM stations, and/or, in serious, severe and extreme ozone nonattainment areas, PAMS stations, and SPM monitoring stations. The plan shall include a statement of purposes for each monitor and evidence that siting and operation of each monitor meets the requirements of appendices A, C, D, and E of this part, where applicable. The annual monitoring network plan must be made available for public inspection for at least 30 days prior to submission to EPA.

This document is prepared and submitted as part of these requirements. It describes the network of ambient air quality monitors, samplers, and analyzers operated by San Diego County Air Pollution Control District (District) staff in fulfillment of EPA regulations governing network compliance that are updated every July 1. This Annual Network Report (ANR) serves to evaluate whether the current monitoring strategies are meeting the requirements of the District, to determine compliance with all current Federal, and State regulations as it pertains to the ambient Air Quality Network (AAQN). It also serves to identify and report needs for additions, relocations, or terminations of monitoring sites or instrumentation to continue to meet federal requirements.

The Ambient Air Quality Monitoring Network measures air pollutants on a regional level. The District also has a Community Air Protection Program (CAPP) that is devoted to Environmental Justice and the monitoring of toxic air contaminants at a microscale and localized level. The District has a separate network of air monitoring sites within Environmental Justice communities to measure pollutants that are of interest to the community. Although the CAPP has a separate network of monitoring sites for Environmental Justice communities, there is some overlap with the Ambient Air Quality Monitoring Network. The District's Ambient Air Quality Monitoring Network sites at Sherman Elementary School (SES) and at the Otay Mesa-Donovan State Prison (DVN) fall within the Portside Environmental Justice Community and the International Border Community, respectively.

In addition, as part of the AB-423 legislation, the District approved a separate Comprehensive Monitoring Plan in the fall of 2022. The Comprehensive Monitoring Plan discusses the decision process and tools the District uses when determining placement of a new monitoring location (regional or community-based) and the pollutants to measure at that location.

Section 1.2 Purpose, Scope, and Organization of Annual Network Report

In San Diego County, there are several locations where the ambient air quality is routinely measured for air pollutants. These sites are operated by the District. The measured data provide the public with information on the status of the air quality and the progress being made to improve air quality. The data can be used by health researchers, business interests, environmental groups, and others.

This report describes the network of ambient air quality monitors within the San Diego Air Basin (SDAB) and meets the requirements for an Annual Network Report as listed in Title 40 of the Code of Federal Regulations (CFR), Part 58.10. The 40 CFR 58.10 require that the report be submitted to the EPA, including any public comments, by July 1, of each year.

As required by the CFR, this report includes equipment which have federal reference methods (FRM) or federal equivalent methods (FEM) designations. While the CFR also requires reporting of approved regional methods (ARM), no ARMs are in operation in San Diego County at this time. Air monitoring samplers and analyzers are designated as FRM and FEM. Only air pollution concentrations measured by FRM and FEM monitors and samplers are compared against the National Ambient Air Quality Standards (NAAQS) for the criteria pollutants (listed in Section 1.4) set by the EPA so that EPA will determine the attainment status. There are no Special Purpose Monitors (SPM) currently in the Network. This report also includes information regarding non-regulatory and non-criteria pollutant monitoring.

Section 1.3 Public Comments Information

Pursuant to Federal regulations, the draft report will be available for a minimum of 30 days for public inspection period. Notice of availability of the report was posted on the District's website (www.sdapcd.org). Comments regarding this report and the District response(s) before submittal to EPA will be listed in the Chapter 2 Overview of the Air Quality Monitoring Network (Section 2.5). Any comments regarding this report and answered by the District after submittal to the EPA, will be forwarded to EPA Region 9 headquarters.

Please submit any comments in writing to David Medina, Senior Chemist, Ambient Air Quality Section, david.medina@sdapcd.org, or mail/deliver to District headquarters at David Medina c/o San Diego County Air Pollution Control District, 10124 Old Grove Road, San Diego, CA, 92131.

Note: The Ambient Air Quality Air Pollution Monitoring Network measures air pollutants on a regional level. The District also has a Community Air Protection Program (CAPP) that is devoted to Environmental Justice and the monitoring of toxic air contaminants at a microscale and localized level.

Section 1.3.1 District Contact Information

For information regarding this report, air monitoring stations, laboratory operations, field and laboratory equipment, procedures of the field and laboratory equipment, or general oversight of the air monitoring programs contact: David Medina, Senior Chemist, Ambient Air Quality Section, <u>david.medina@sdapcd.org</u> (858) 586-2780.

For information about daily field operations regarding the equipment at the stations, contact: Victor Padilla, Supervisor of Technicians, Electronic Technicians Section, <u>victor.padilla@sdapcd.org</u>, (858) 586-2785.

For information regarding ambient air quality data, meteorological data, episode modeling, air quality forecasting, and smoke management plans contact: Adam Canter, Senior Meteorologist, adam.canter@sdapcd.org, (858) 586-2771.

The District now has an independent Quality Assurance (QA) Section starting January 2023. For information regarding the quality assurance of the ambient air monitoring data, contact: Melin Lu, Senior Chemist, QA Section, melin.lu@sdapcd.org, (858) 860-4071.

Section 1.3.2 Additional Air Pollution Information

Additional information regarding San Diego's ambient air quality monitoring network, including pollutant data summaries for the various monitors in the network, are available from a variety of sources. This section lists several additional sources for related information.

Similar information is available on the Environmental Protection Agency (EPA) and California Air Resources Board (CARB) websites, but the links to these locations change frequently. Key words to search at their website are: Ambient Air Quality Monitoring, National Ambient Air Quality Standards, Fine Particle (PM_{2.5}) Designations, The Plain English Guide to the Clean Air Act, About Air Toxics, Health and Ecological Effects, Air Trends, PAMS Information, Green House Gases, Stratospheric Ozone, Environmental Justice, as well as the names of the chapters of this document, etc.

CARB's Monitoring and Laboratory Division (MLD) maintains web pages with information about all the existing monitoring sites that routinely monitor and submit air quality data in California. These web pages also include detailed local maps showing the location of the sites. This information can be found at <u>Air Quality Monitoring | California Air Resources Board</u> and <u>Ambient Air Monitoring – Regulatory | California Air Resources Board</u>.

CARB's annual network report contains listings of all the monitoring sites in the State, along with the years for which the data are available for each monitor/sampler in California. Summaries of the official air quality data from sites around the State can be found at: <u>iADAM Air Quality Data Statistics (ca.gov)</u> (http://www.arb.ca.gov/adam/welcome.html). Pollution data is available on the District's website (http://airnow.gov/, and at https://aqs.epa.gov/aqsweb/documents/data mart welcome.html.

Section 1.4 Description of Monitoring

The EPA has set National Ambient Air Quality Standards (NAAQS) for six common air pollutants, which are called criteria pollutants. These pollutants are known to cause health effects and harm the environment. It is the role of the San Diego County APCD to measure for these criteria pollutants. In addition, the EPA requires that the San Diego County APCD operates additional monitoring programs. This document details the current monitoring network in the SDAB for the criteria pollutants, monitoring programs, and site detail the District must report, and they are listed below:

Monitoring Programs	Criteria Pollutants	Site Information
-National Core (Ncore)	-Ozone (O ₃)	-Site Location
-Speciation Trends Network (STN)	-Nitrogen Dioxide (NO ₂)	-Site Type
-Chemical Speciation Network (CSN)	-Carbon Monoxide (CO)	-Site Objective
-Special Purpose Monitoring (SPM)	-Sulfur Dioxide (SO ₂)	-Spatial Scale
-Near-road	-Lead (Pb)	-Sampling Schedule
-Border 2020	-Particulate Matter (PM)	-Equipment
-Photochemical Assessment Monitoring		-Sampling Method
Stations (PAMS)		-Monitoring Objective

Section 1.4.1 Network Design Theory

Ambient air monitoring networks (Network) are designed to fulfill several criteria. A general summary of the criteria are below.

Network Design Objectives

- 1. Provide data to the public in a timely manner.
- 2. Support compliance with NAAQS and emissions strategy development.
- 3. Support air pollution research studies.

Logistical

- 1. Minimal interference and perturbation of wind flow by obstacles.
- 2. Proximity to headquarters.
- 3. Availability of electrical power and communications.
- 4. Cost of site lease, relocation, or new deployment, site improvements, e.g. fence, road, etc.
- 5. Safety, security, and accessibility.
- 6. Flat, level footprint for shelter, platforms, and concrete pad.
- 7. Gravel or paved road access.

Other

- 1. Funding.
- 2. Staffing.
- 3. Drive time from location to location (congestion patterns).
- 4. Longevity of the site location.
- 5. Development of the area surrounding the monitoring location.
- 6. Proximity to other monitors.
- 7. Homogeneity in space and with respect to speciation.
- 8. Devoid of source influences (point sources, mobile sources, etc.).

Section 1.5 San Diego Air Basin Description

San Diego County lies in the southwest corner of California, has an area of 4,526 square miles, and encompasses the San Diego Air Basin (SDAB) and includes part of the Salton Sea Air Basin. Most of the County's population and pollutant emissions are concentrated in the western portion of the County in the SDAB, which extends to the mountains in the near east. The topography in the SDAB, along with local meteorology, influences the pollutants in the basin. San Diego County also shares an international border with Mexico. The neighboring city of Tijuana forms a binational airshed with San Diego. The Air Pollution Control District has air monitoring stations set-up throughout the SDAB to monitor for these pollutants.

Section 1.5.1 San Diego Topography

The topography of San Diego County is highly diverse and comprises of coastal plains and lagoons, flatlands and mesas, broad valleys, canyons, foothills, mountains, and deserts. Generally, building structures are on the flatlands, mesas, and valleys, while the canyons and foothills tend to be sparsely developed. This segmentation is what has carved the region into a conglomeration of separate cities that led to low density housing and an automobile-centric environment.

To the west of San Diego are the beaches and the Pacific Ocean, to the south is Tijuana, Mexico and the Baja California Peninsula, to the near east are the mountains, to the far east is the desert (the Salton Sea Air Basin), and to the north is the South Coast Air Basin (the greater Los Angeles-Riverside-San Bernardino area/Air Basin).

Section 1.5.2 San Diego Climate

The climate is classified as Mediterranean, but it is diverse because of the topography. The climate is dominated by the Pacific High-pressure system that results in mild, dry summers and mild, wet winters. San Diego experiences over 150 days above 70°F and 8" to12" of rainfall annually (mostly, November – March). El Niño and La Niña patterns have large effects on the annual rainfall received in San Diego.

An El Niño is a warming of the surface waters of the eastern Pacific Ocean. It is a climate pattern that occurs across the tropical Pacific Ocean that is associated with drastic weather occurrences, including enhanced rainfall in Southern California. La Niña is a term for cooler than normal sea surface temperatures across the Eastern Pacific Ocean. San Diego receives less than normal rainfall during La Niña years.

The Pacific High-pressure system drives the prevailing winds in the SDAB. The winds tend to blow onshore in the daytime and offshore at night. In the summer, an inversion layer is created over the coastal areas and increases the O₃ levels. In the winter, San Diego often experiences a shallow inversion layer which tends to increase carbon monoxide and PM_{2.5} concentration levels due to the increased use of residential wood burning.

In the fall months, the SDAB is often impacted by Santa Ana winds. These winds are the result of a high-pressure system over the Nevada-Utah region that overcomes the westerly wind pattern and forces hot, dry winds from the east to the Pacific Ocean. These winds are powerful and incessant. They blow the air basin's pollutants out to sea. However, a weak Santa Ana can transport air pollution from the South Coast Air Basin and greatly increase the San Diego ozone concentrations. A strong Santa Ana also primes the vegetation for firestorm conditions.

Section 1.5.3 Population

According to the official 2020 U.S. census the population for San Diego County is 3.3 million. The County population has been increasing by a growth rate of 0.46% annually.

(left intentionally blank)

Chapter 2: Overview of the Air Quality Monitoring Network

Section 2.1 Executive Summary of the Air Quality Monitoring Network

The District operated nine (9) monitoring sites in 2022 that collected criteria pollutant data (Figure 2.1). The District's monitoring network has been designed to provide criteria pollutant monitoring coverage to the majority of the inhabited regions of the County (Table 2-1 & Table 2-2).

Since the San Diego County Air Pollution Control District was established by the County Board of Supervisors in 1955, occasional air monitoring has been performed in remote portions of the County, including the mountain and desert areas. Historical measurements have shown relatively low levels of air pollution in these areas. Population and growth in these areas have remained low enough that routine air sampling has not been necessary. Measurements have shown that harmful air contaminants are found in areas where population is dense, traffic patterns are heavy, and industrial sources are concentrated. As pollutants are carried inland by prevailing winds, they are frequently trapped against the mountain slopes by a temperature inversion layer, generally occurring between 1500 and 2500 feet above sea level. Therefore, our air monitoring stations are found between the coast and the mountain foothills up to approximately 2000 feet. The monitoring network needs to be large enough to cover the diverse range of topography, meteorology, emissions, and air quality in San Diego, while adequately representing the large population centers. This monitoring network plays a critical role in assessing San Diego County's clean air progress and in determining pollutant exposures throughout the County.

Ambient concentration data are collected for a wide variety of pollutants in the SDAB. These pollutants are: ozone (O₃), fine particulate matter 2.5 micrometers and less in diameter (PM_{2.5}), particulate matter 10 micrometers and less in diameter (PM₁₀) nitrogen dioxide (NO₂), carbon monoxide (CO), sulfur dioxide (SO₂), and lead (Pb). The District also measures additional compounds, including reactive oxides of Nitrogen (NO_y), and PAMS parameters [carbonyls, and Volatile Organic Compounds (VOCs)]. Monitoring for meteorological parameters is also conducted at most monitoring locations. Data for all the pollutants are needed to better understand the nature of the ambient air quality in San Diego County, as well as to inform the public regarding the quality of the air they breathe. Not all pollutants are monitored at all sites, but most sites monitor for multiple pollutants. A particular site's location and monitoring purpose determine the actual pollutants measured at that site.

A fundamental purpose of air monitoring to distinguish between areas where pollutant levels exceed the ambient air quality standards and areas where those standards are not exceeded. Health-based ambient air quality standards are set at levels that preclude adverse impacts to human health (allowing for a margin of safety). The District develops strategies and regulations to achieve the emission reductions necessary to meet all health-based standards. Data from the ambient monitoring network are then used to indicate the success of the regulations and control strategies in terms of the rate of progress towards attaining the standards or to demonstrate that standards have been attained and maintained. Thus, there is an established feedback loop between the emission reduction programs and the ambient monitoring programs. Over the years, Federal, State, and District regulatory/strategic measures have proven to be extremely successful at reducing levels of harmful air contaminants. Monitors once placed throughout the County to document the frequent and regular exceedance of ozone, nitrogen dioxide, carbon monoxide, and particulate matter standards now document the continued downward concentration trends of these pollutants.

Section 2.1.1 Overview of the Pollutant Monitoring Network

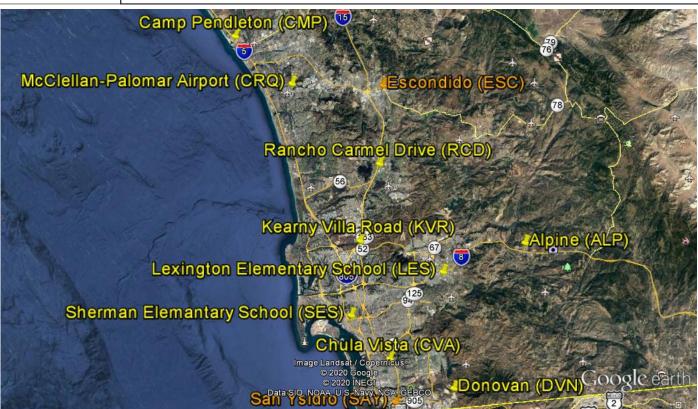

This section lists all the monitoring locations in the SDAB undertaken by the District for this report year. Table 2-1 below is a list of the District's stations and their locations. Figure 2.1 shows where these monitoring locations are on a map of the County. Table 2-2 lists all the samplers, analyzers, and other instrumentation at these monitoring sites.

Table 2-1 List of Network Sites

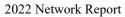
Station Name	Station Abbreviation	Address	Latitude/ Longitude	AQS ID
Alpine-Padre Dam	ALP	2300 W. Victoria Dr.	32.842312° -116.768277°	06-073-1006
Camp Pendleton	CMP	21441 W. B St.	33.217020° -117.396179°	06-073-1008
Chula Vista	CVA	84 E. J St.	32.631243° -117.059086°	06-073-0001
Otay Mesa – Donovan	DVN	480 Alta Rd.	32.578162° -116.921388°	06-073-1014
*Escondido	ESC	600 E. Valley Pkwy.	33.127765° -117.075093°	06-073-1002
Kearny Villa Rd.	KVR	6125A Kearny Villa Rd.	32.845713° -117.123979°	06-073-1016
Lexington Elementary School	LES	533 B. First St.	32.789569° -116.944308°	06-073-1022
McClellan-Palomar Airport	CRQ	2192 Palomar Airport Rd.	33.130898° -117.272392°	06-073-1023
Rancho Carmel Dr. (1st Near-road Site)	RCD	11403 Rancho Carmel Dr.	32.985428° -117.082213°	06-073-1017
*San Ysidro (2 nd Near-road Site)	SAY	198 W. San Ysidro Blvd.	32.552809° -117.047328°	06-073-1025
Sherman Elementary School	SES	450B 24 th St.	32.710177° -117.142665°	06-073-1026

^{*}Orange= Still in development. District is seeking a new monitoring site in Escondido. San Ysidro Near-road site is expected to be operational in 2023.

*Orange= In development

Figure 2.1 San Diego APCD Air Quality Monitoring Network

Table 2-2 Air Monitoring Sites with Associated Monitors/Samplers & Sample Frequency


rabi	e z-z Air M	onitori	ng Sites	with As	ssociate	a Monite	ors/San	ipiers &	k Sample	Frequency
		ALP	СМР	CVA	DVN	LES	KVR	CRQ	RCD	SES
		Alpine	Camp Pendleton	Chula Vista	Donovan	Lexington Elementary	Kearny Villa Rd.	Palomar Airport	Rancho Carmel Dr.	Sherman Elementary School
Į.	O ₃	7/24	7/24	7/24	7/24	7/24	7/24			7/24
AMBIENT	NO ₂	7/24	7/24	7/24	7/24	7/24	7/24		7/24	7/24
₹	СО								7/24	
	NOy-TLE					7/24				
NCORE	CO-TLE					7/24				
I	SO ₂ -TLE					7/24				
LEAD	(Airports) (Hi-Vol)							1:6		
	Continuous	7/24	7/24		7/24	7/24				7/24
PM_{10}	(Manual)			1:6	1:6	1:3				
PM10-2.5	(Manual)					1:3				
FEM P	(non-FEM Continuous)	7/24	7/24		7/24	7/24				7/24
PM _{2.5} CSN FRM n-FEM	(Manual)			1:3		1:1	1:3		1:3	1:3
csn F	(Speciation)					1:3				
PM	Channel 1 (Metals)					1:3				
STN	Channel 2 (Inorganic Ions)					1:3				
	Channel 3 (Wood Smoke)									
4S	(VOCs)					7/24				
PAMS	(Carbonyls)					1:3				
RB)	(VOCs)			1:6		1:6				
OXICS CA-TAC (CARB)	(Total Metals & Cr ⁺⁶)			1:12		1:12				
TOXICS CA-TA	(Aldehydes/ Carbonyls)			1:6		1:6				
T(APCD)	(Total Metals)				1:6	1:6				1:6
(AP	(Aldehydes/ Carbonyls)				1:6					1:6
	Wind Speed	7/24	7/24	7/24	7/24	7/24	7/24			7/24
hers	Wind Direction	7/24	7/24	7/24	7/24	7/24	7/24			7/24
S & Ot	External Temperature	7/24	7/24	7/24	7/24	7/24	7/24		7/24	7/24
METER	% Relative Humidity	7/24				7/24	7/24			
METEROLOGICAL PARAMETERS & Others	Internal Temperature	7/24	7/24	7/24	7/24	7/24	7/24		7/24	7/24
GICAL	Barometric Pressure					7/24	7/24		<u> </u>	
ROLO	Solar Radiation					7/24	7/24			
METE	Ultraviolet Radiation					7/24				
	Precipitation					7/24			<u> </u>	
			<u> </u>	1	l .		l			

- Yellowed areas indicate a collocation of samplers to satisfy Federal QA requirements for PM_{2.5} FRM monitors, PM₁₀, and TSP samplers with a sampling frequency of 1:6.
- The official PAMS season is from June to the end of August. VOCs are sampled and analyzed on an hourly basis (7/24). For PAMS Carbonyls there are three 8-hour samples collected every three days (1:3) with one collocated 8-hour sample collected every 6 days (1:6).
- All sample times are set to Pacific Standard Time.
- The District operates, calibrates, and audits all instruments listed in Table 2-2, except for the CARB's Xontech 924's at the Chula Vista and El Cajon stations (operation only) and ATECs.
- Not all collected samples are analyzed by District personnel. Some samples are sent to the EPA or CARB laboratories for subsequent analysis. They are noted in Table 2-5 as EPA or CARB.
- CA TAC stands for the California Toxics Air Contaminant Monitoring network.

Sampling frequencies are designated as follows:

- 7/24= a sampler that operates continually with no media changes needed (Please note that a filter tape roll is used on the non-FEM Continuous BAM sampler and changed as needed).
- 1:1= a sampler that requires a sample deposition media (filter, DNPH cartridge, or Summa canister); it runs daily for a duration of 24 hours. The media are manually loaded, collected, and programmed to run on a weekly basis.
- 1:3= a sampler that requires a sample deposition media (filter, DNPH cartridge, or Summa canister); it runs every three (3) days for a duration of 24 hours. The media are manually loaded, collected, and programmed in between sample days.
- 1:6= a sampler that requires a sample deposition media (filter, DNPH cartridge, or Summa canister); it runs every six (6) days for a duration of 24 hours. The media are manually loaded, collected, and programmed on a weekly basis
- 1:12= a sampler that requires a sample deposition media (filter, DNPH cartridge, or Summa canister); it runs every twelve (12) days for a duration of 24 hours. The media are manually loaded, collected, and programmed on a biweekly basis.

Chapter 2: Overview of the Air Quality Monitoring Network

Page 2-6 of 17

Tables 2-3 to 2-8 use the same Glossary (see below)

Glossary of Terms

G/B= General/Background

WRI= Welfare related impacts

RT= Regional Transport

QA= Quality assurance

Monitor Type Method (Sampling/Analysis) Network Affiliation E=EPACL= Chemiluminescence BG= Border Grant CT= Low Volume, size selective inlet, continuous CSN STN= Trends Speciation O= Other SLAMS= State &Local monitoring stations FL= Fluorescence CSN SU= Supplemental Speciation SPM= Special purpose monitor HV= High volume NATTS= National Air Toxics Trends Stations CATAC= California Toxics Monitoring IR= Nondispersive infrared NCORE= National Core Multi-pollutants SI= High volume, size selective inlet NR= Near-road SP= Low volume, size selective inlet, speciated PAMS= Photochemical Assessment Monitoring Site Type HC= Highest concentration SQ= Low volume, size selective inlet, sequential PE= Population exposure UV= Ultraviolet absorption Spatial Scale Canister= Evacuated stainless steel canisters SO= Source oriented MI= Micro Cartridges= Di-nitrophenylhydrazine cartridges UPBD= Upwind background MS= Middle

FSL= Fused Silica Lined Filter= Quartz filters Auto= GCFID continuous

CAPS= Cavity Attenuated Phase Shift

BS=Broadband Spectroscopy

Monitor Designation
PRI= Primary
QAC=Collocated

Objective (Federal)

NS= Neighborhood

NAAQS= Suitable for NAAQS comparison Research= Research support PI= Public Information N/A= Not Applicable

O= Other

2022 Network Report Chapter 2: Overview of the Air Quality Monitoring Network Page 2-7 of 17

Section 2.1.2 Overview of the Gaseous Pollutant Monitoring Network

Table 2-3 below is a summary of the criteria gaseous pollutants and NO_y monitoring network.

Table 2-3 Gaseous Pollutants Monitoring Network

A	Abbreviation	ALP	CMP	CVA	L	ES	KVR	DVN	RCD	SES
	Name	Alpine	Camp Pendleton	Chula Vista	Lexington Ele	mentary School	Kearny Villa Rd.	Donovan	Rancho Carmel Dr.	Sherman Elementary School
AQS ID 06-073-1006 06-073-1008		06-073-0001	06-07	3-1022	06-073-1016	06-073-1014	06-073-1017	06-073-1026		
	Monitor Type	SLAMS	SLAMS	SLAMS	SLA	AMS	SLAMS	SLAMS		SLAMS
	Method	UV	UV	UV	U	V	UV	UV		UV
	Affiliation	Not Applicable	Not Applicable	Not Applicable	PAMS	, Ncore	Not Applicable	Not Applicable		Not Applicable
030	Spatial Scale	US	NS	NS	N	IS	NS	NS		NS
0	Site Type	HC	PE	PE	P	E	PE	PE		PE
	Objective	PI,	PI, NAAQS	PI, NAAQS		I,	PI,	PI,		PI,
	(Federal)	NAAQS Thermo	Thermo	Thermo		AQS	NAAQS Thermo	NAAQS Thermo		NAAQS Thermo
	Equipment	49i	49i	49i	4	9i	49i	49i		49i
	Monitor Type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
	Method	CAPS	CAPS	CAPS	CAPS	CL	CL	CL	CL	CAPS
	Affiliation	Not Applicable	Not Applicable	Not Applicable	PAMS, Ncore	PAMS, Ncore	Not Applicable	Not Applicable	NR	NA
& NOy	Spatial Scale	NS	NS	NS	NS	NS	NS	NS	NS	NS
NO ₂ &	Site Type	PE	PE	PE	PE	PE	PE	НС	PE	PE
_	Objective (Federal)	PI, NAAQS	PI, NAAQS	PI, NAAQS	PL Research	PI, Research	PI, NAAQS	PI, NAAQS	PI, NAAQS	PI, NAAQS
	Equipment	Teledyne T500U	Teledyne T500U	Teledyne T500U	Teledyne T500U	Thermo 42i-y	Thermo 42i	Thermo 42i	Thermo 42i	Teledyne T500U
	Monitor Type				SLA	AMS			SLAMS	
	Method				I	R			IR	
	Affiliation				No	ore			Not Applicable	
8	Spatial Scale					IS			NS	
0	Site Type					E			PE	
	Objective					I,			PI,	
	(Federal)				NA.	AQS			NAAQS	
	Equipment				Thermo,	48i-TLE			Thermo, 48i-TLE	
	Monitor Type				SLA	AMS				
	Method				F	L				
	Affiliation				No	ore				
SO_2	Spatial Scale				N	IS				
	Site Type				P	E		+	†	
	Objective (Federal)					I, AQS				
	Equipment					43i-TLE				

Section 2.1.3 Overview of the Pb-TSP Sampling Network

Table 2-4 below is a summary of the lead particulates sampling network (regulatory method only).

Table 2-4 Lead Sampling Network

1 41	ne 2 i Le	aa sampii	ing ricewo				
1	Abbreviation	CRQ					
	Name	Palomar Airport					
	AQS ID	06-073	3-1023				
	Monitor Type	SLAMS	SLAMS				
	Designation	0	QAC				
	Method	HV	HV				
	Affiliation	Not Applicable	Not Applicable				
p	Spatial Scale	MI	MI				
Lead	Site Type	SO	QA				
	Objective (Federal)	NAAQS	NAAQS				
	Analysis	APCD	APCD				
	Frequency	1:6	1:6				
	Equipment	Tisch TE- 5170BLVFC+	Tisch TE- 5170BLVFC+				

Section 2.1.4 Overview of the PM_{2.5} Sampling Network

Table 2-5 below is a summary of the PM_{2.5} sampling network.

Note: The T640x analyzers replaced the BAM Samplers in 2022. The start dates are as follows, Alpine: 9/8/2022, Camp Pendleton: 8/30/2022, Lexington Elementary School: 8/11/2022, Donovan: 8/2/2022, Sherman Elementary School 8/11/2022.

Table 2-5 PM_{2.5} Sampling Network

Sit	e Abbreviation	Al	LP	CN	ЛР	CVA	LES			KVI	₹	DVI	N		SES		RCD		
	Site Name	Alp	pine	Camp Po	endleton	Chula Vista	I	Lexington Elementary School				Donovan		Sherman Elementary School			Rancho Carmel Dr.		
	AQS ID	06-073	3-1006	06-073	3-1008	06-073- 0001		06-073-1022		06-073-1022		06-073-	1016	06-073-	1014		06-073-1026		
	Monitor Type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS		
	Designation	0	0	0	0	PRI	0	PRI	0	PRI	QAC	0	0	0	0	PRI	PRI		
	Method	CT (non- FEM)	СТ	CT (non-FEM)	CT	SQ (FRM)	CT (non- FEM)	SQ (FRM)	CT	SQ (FRM)	SQ (FRM)	CT (non-FEM)	СТ	CT (non-FEM)	СТ	SQ (FRM)	SQ (FRM)		
ted)	Affiliation	N/A	N/A	N/A	N/A	N/A	Ncore	Ncore	Ncore	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NR		
eciated)	Spatial Scale	US	US	US	US	NS	US	NS	NS	NS	NS	NS	NS	NS	NS	NS	MS		
ds-uoi	Site Type	PE	PE	PE	PE	PE	PE	НС	PE	PE	PE	PE	PE	PE	PE	PE	SO		
PM _{2.5} (r	Objective (Federal)	PI, Research	NAAQS	PI, Research	NAAQS	NAAQS	PI, Research	NAAQS	NAAQS	NAAQS	NAAQS	PI, Research	NAAQS	PI, Research	NAAQS	NAAQS	NAAQS		
	Analysis	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD		
	Frequency	7/24	7/24	7/24	7/24	1:3	7/24	1:1	7/24	1:3	1:6	7/24	7/24	7/24	7/24	1:3	1:3		
	Equipment	Met One BAM- 1020	Teledyne T640x	Met One BAM-1020	Teledyne T640x	Met One E-SEQ- FRM	Met One BAM- 1020	Met One E-SEQ- FRM	Teledyne T640x	Met One E-SEQ-FRM	Met One E-SEQ- FRM	Met One BAM-1020	Teledyne T640x	Met One BAM-1020	Teledyne T640x	Met One E-SEQ- FRM	Met One E-SEQ-FRM		
	Monitor Type						SLAMS	SLAMS											
	Method		<u> </u>				SP & SQ	SP & SQ							<u>†</u>				
<u> </u>	Affiliation						NCORE, CSN, STN	NCORE, CSN, STN											
iated	Spatial Scale						NS	NS											
(speciated)	Site Type						PE	PE											
PM _{2.5}	Objective (Federal)						Research	Research											
	Analysis						EPA	EPA											
	Frequency						1:3	1:3											
	Equipment						URG- 3000N	Met One SuperSASS											

Section 2.1.5 Overview of the PM₁₀ Sampling Network

Table 2-6 below is a summary of the PM₁₀ sampling network.

Note: The T640x analyzers were installed in 2022. The start dates are as follows, Alpine: 9/8/2022, Camp Pendleton: 8/30/2022, Lexington Elementary School: 8/11/2022, Donovan: 8/2/2022, Sherman Elementary School 8/11/2022.

Table 2-6 PM₁₀ Sampling Network

	Abbreviation	ALP	CMP	CVA DVN				LI	ES	SES
	Name	Alpine	Camp Pendleton	Chula Vista		Donovan		Lexington Eler	Sherman Elementary School	
	AQS ID	06-0731006	06-073-1008	06-073-0001		06-073-1014		06-073	3-1022	06-073-1026
	Monitor Type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
	Designation	О	0	О	О	QAC	QAC	0	0	О
	Method	BS	BS	SQ	SQ	SQ	SQ	SQ	BS	BS
	Affiliation	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Ncore	Ncore	Not Applicable
PM10	Spatial Scale	NS	NS	NS	NS	NS	NS	NS	NS	NS
PN	Site Type	PE	PE	PE	НС	PE	PE	PE	PE	PE
	Objective (Federal)	NAAQS	NAAQS	NAAQS	NAAQS	NAAQS	NAAQS	NAAQS	NAAQS	NAAQS
	Frequency	7/24	7/24	1:6	1:6	1:6	7/24	1:6	7/24	7/24
	Equipment	Teledyne T640x	Teledyne T640x	Met One E-SEQ-FRM w/o VSCC	Met One E-SEQ-FRM w/o VSCC	Met One E-SEQ-FRM w/o VSCC	Teledyne T640x	Met One E-SEQ-FRM w/o VSCC	Teledyne T640x	Teledyne T640x

<u>Section 2.1.6 Overview of the PAMS Network</u>
Table 2-7 below is a summary of the Photochemical Assessment Monitoring Stations (PAMS) network.

Table 2-7 PAMS Sampling Network

1 ab	Table 2-7 I AMS Sampling Network											
	Abbreviation	LES										
	Name	Lexington										
	AQS ID	06-073-1022										
	Monitor Type	SLAMS	SLAMS	SLAMS								
	Method	Auto	Cartridges	Cartridges								
	Affiliation	PAMS	PAMS	PAMS								
	Spatial Scale	NS	NS	NS								
PAMS	Site Type	PE	PE	PE								
Ь	Objective (Federal)	Research	Research	Research								
	Analysis By	APCD	APCD	APCD								
	Frequency	24/7	1:3	1:6								
	Equipment	Agilent GCFID / Markes	Atec 8000	Atec 8000								

Chapter 2: Overview of the Air Quality Monitoring Network Page 2-12 of 17

Section 2.2 Summary of the Minimum Monitoring Requirements for the SDAB

The EPA regulations specify the minimum number of sites at which State and Local air agencies must deploy monitors. The State and Local agencies generally find they need to deploy more monitors than are minimally required to fulfill State and Local purposes for monitoring. For example, often California air quality standards are more stringent than National standards, so many areas need more monitors than required by the EPA to show compliance with both State and National standards.

For pollutants monitoring, the minimum requirements for the number of monitors are in the 40 CFR 58, Appendix D "Network Design Criteria for Ambient Air Quality Monitoring". Each pollutant or monitoring program has different requirements for determining the minimum number of monitors needed for a Metropolitan Statistical Area (MSA) and the requirements can change yearly. The County of San Diego encompasses the San Diego County air basin and part of the Salton Sea air basin, as outlined by the California Air Resources Board. Some pollutants have additional monitoring requirements associated with them, e.g. PM_{2.5} monitoring has requirements for continuous and sequential monitors. This section summarizes the minimum monitoring requirements from the criteria pollutant chapters in this report. For greater detail, refer to the specific pollutant's chapter.

Note: when the number of monitors required is based on the MSA population, it is taken from the latest U.S. Census. In the non-Census years, the MSA population is extrapolated by the San Diego Association of Governments (SANDAG) and that number is used by the District.

The U.S. EPA regulations specify the minimum number of samplers and monitors (also referred to as analyzers) needed for ambient air monitoring, including those required for collocation. These numbers vary annually, by program, and by within each pollutant. Table 2-8 summarizes these totals listed in the subsequent chapters. Much of this equipment overlaps and can serve multiple functions and/or programs. For example, there are two different requirements for the NO_y analyzer: one for the PAMS program and one for the Ncore program. These dual requirements are listed in Table 2-8, but the details allowing for one NO_v analyzer to be used for both programs are listed in the NO₂ chapter and this is true for the other parameters as well.

Table 2-8 Summary of Minimum Monitoring Requirements

Parameter	Summary of Minimum Monitoring Requirements Requirements for	Number of	Number of	Number of
Farameter				
	Monitors/Samplers	Equipment	Equipment	Equipment
	for CFR Programs	Required	Active	Needed
O ₃	CFR EPA Table D-2 only=	2	7	0
0,	Ncore & PAMS only=	1	1	0
	Near-road=	2	1	1
NO ₂ ,	Area-Wide=	1	1	0
True- NO ₂ ,	Regional Administrator=	1	1	0
NO _y	PAMS true-NO ₂ =	1	1	0
	Ncore & PAMS $NO_y =$	1	1	0
	Near-road=	1	1	0
СО	Regional Administrator	0	0	0
	Ncore=	1	1	0
	SIP=	1	1	0
SO ₂	PWEI=	1	1	0
502	Ncore=	1	1	0
	Source (non-Airport)=	0	0	0
	Source (Airport)=	0	0	0
Pb-TSP	Airport Study=	0	0	0
10-151	Airport Study Exceedance=	1	1	0
	Regional Administrator=	0	0	0
	QA Collocation=	1	1	0
	CFR EPA Table D-2 only=	3	5	0
	California Particulate Matter Network (non-microscale)=	5	4	1
	DV Maximum Concentration, 24-Hr =	1	1	0
PM _{2.5}	DV Maximum Concentration, Annual Average=	1	1	0
Samplers	Expected Maximum Concentration, 24-Hr =	1	1	0
Sumplers	Expected Maximum Concentration, Annual Average=	1	1	0
	Near-road=	1	0	0
	Poor Air Quality=	1	1	0
	Ncore=	1	1	0
	QA Collocation=	l	1	0
PM _{2.5}	Minimum number required=	2	5	0
Continuous	Minimum number of PM _{2.5} continuous collocated with PM _{2.5} manual=	1	1	0
	Ncore=	1	1	0
	QA collocation PM _{2.5} continuous with PM _{2.5} continuous=	1	0	0
PM _{2.5}	PM _{2.5} STN & CSN Speciation=	2	1	1
Speciation	Ncore=	1	1	0
D) (CFR EPA Table D-2 only=	6-10	6	0
PM ₁₀	Ncore=	1	1	0
Samplers	QA collocation	1	1	0
	PM _{2.5} -Continuous=	1	1	0
	PM _{2.5} -Manual (Integrated/filter-based)=	1	1	0
	PM _{2.5} -Speciated=	1	1	0
	$PM_{10\cdot 2.5} =$	1	1	0
	Ncore & PAMS O ₃ =	1	1	0
Ncore	SO ₂ -TLE=	1	1	0
	CO-TLE=	1	1	0
	Ncore & PAMS NO/NO _y =	1	1	0
	Wind speed/Wind direction=	1	1	0
	% Relative Humidity=	1	1	0
	Ambient temperature=	1	1	0
	Hourly averaged speciated volatile organic compounds (VOCs)=	1	1	0
	Three 8-hour averaged carbonyl samples per day on a 1 in 3 day schedule =	1	1	0
	Ncore & PAMS O ₃ =	1	1	0
	NO=	1	1	0
	True-NO ₂ =	1	1	0
	Ncore & PAMS NO _y	1	1	0
PAMS	Ncore & PAMS Hourly averaged ambient temperature=	1	1	0
1711115	Ncore & PAMS Hourly vector-averaged wind direction=	1	1	0
	Hourly average atmospheric pressure=	1	1	0
	Ncore & PAMS Hourly averaged relative humidity=	1	1	0
	Hourly precipitation=	1	1	0
	Hourly averaged mixing-height=	1	1	0
1	Hourly averaged solar radiation=	1	1	0
	Hourly averaged ultraviolet radiation	1	1	0

Section 2.3 Summary of Minimum Monitoring Requirements (Data)

The EPA regulations specify, when applicable:

- how samplers, analyzers, and stations are positioned, to collect data that can be compared to the National standards (NAAQS),
- how the samplers and analyzers are checked using established EPA methodologies, and
- that this data can be legally certified.

Section 2.3.1 Suitability for Comparison to the NAAQS (Data)-Criteria Pollutants

The CFR requires that for O₃, NO₂, CO, SO₂, Pb-TSP, PM_{2.5}, PM₁₀ data to be used in regulatory determinations of compliance with the NAAQS, these instruments must be sited according to Federal Regulations (these requirements are listed in 1)a)i)(1)(a)(i)Appendix A:) and the sampling frequency must be in accordance with Federal regulations (sampling frequencies for each pollutant are in their respective chapters). All the District's instruments meet or exceed all minimum monitoring requirements for siting and sampling frequencies, and the data from them can be compared to the NAAQS and the data can be certified.

Section 2.3.2 Quality Control/Quality Assurance (Data)-Criteria Pollutants

All the District's O₃, NO₂, CO, SO₂, Pb-TSP, PM_{2.5}, PM₁₀ samplers and analyzers were calibrated, flow checked, one-point checked, internally/District-audited, and externally-NPAP & NPEP audited according to EPA methodologies and the data can be certified.

Section 2.3.3 Reporting/Certifying (Data)-Criteria Pollutants

All the ambient data from the O₃, NO₂, CO, SO₂, Pb-TSP, PM_{2.5}, PM₁₀ samplers and analyzers were reviewed for validity and the verified data were uploaded into EPA's AQS database quarterly.

All QA and QC reports regarding the O₃, NO₂, CO, SO₂, Pb-TSP, PM_{2.5}, PM₁₀ instruments were reviewed for validity and the verified data were uploaded into EPA's AQS database quarterly.

All reviewed and verified ambient data and all reviewed and verified QA/QC reports regarding the O₃, NO₂, CO, SO₂, Pb-TSP, PM_{2.5}, PM₁₀ instruments, were certified in a letter to the EPA Region 9 Authorities on June 2, 2023.

Section 2.3.4 Unsuitability for Comparison to the NAAQS (Data)-non-Criteria Pollutants & Other

The District analyzes for other pollutants: PM_{2.5} (continuous) in non-FEM mode, PAMS-VOCs, PAMS-Carbonyls, and Toxics-Carbonyls. These instruments have no NAAQS to compare. All these instruments meet or exceed all minimum monitoring requirements for siting and sampling frequencies.

Section 2.3.5 Quality Control/Quality Assurance (Data)-non-Criteria Pollutants & Others

All QA/QC functions on the District's PM_{2.5} (continuous) in non-FEM mode, PAMS-VOC, PAMS-Carbonyls, and Toxics-Carbonyls instruments met or exceeded EPA requirements.

Section 2.3.6 Reporting/Certifying (Data)-non-Criteria Pollutants & Others

All the data from the PAMS-VOC, PAMS-Carbonyls, and Toxics-Carbonyls instruments were reviewed for validity and the verified data were uploaded into EPA's AQS. The verified data were uploaded to the EPA's AQS database. This data is non-certifiable and is not included in the annual Data Certification Report.

Section 2.4 Recent Planned and Unplanned Changes to the Network

The EPA Region 9 governing authority approves the District's distribution of monitors and the location of the collocated sites for compliance with Federal regulations. Any station or equipment changes will be undertaken in partnership and advisement with the EPA (and CARB, when applicable). Before any SLAMS monitor is decommissioned, the District will follow the procedures listed in 40 CFR Part 58.14, "System Modifications" and any proposed changes to the air monitoring network will be documented in the Annual Network Report. The District will provide a minimum 30-day period for public review, prior to any change, when possible. If a station or analyzer is to relocate, parallel sampling will be undertaken, when possible.

Changes to the monitoring network may occur outside the Annual Network Report approval and the planning process, due to unforeseen circumstances such as eviction, safety concerns, etc. Any changes due to circumstances beyond the District's control will be communicated in writing to the EPA Regional Authority and identified in the subsequent Annual Network Report.

Note: all listed timelines for construction activities are an estimate, as all construction activities require city permitting, construction work goes out to the competitive bid process, and these are handled by the County Department of General Services and the District has no control over these timelines.

Section 2.4.1 Station Changes (Relocations, Shutdowns, and Additions)

The section discusses all the station changes in the network (planned and unplanned).

Section 2.4.1.1 Relocations

• **Escondido** – Operational timeline – TBD.

In 2015, the District was evicted from the Escondido site. During the set-up of the new site, the County announced (in March 2022) the plan for a new high density, affordable housing project to be built on the County land adjacent to the monitoring station. The project would impact the air monitoring at the site. The District will locate an alternative location (TBD) in the Escondido area for the air monitoring station and meet the EPA siting requirements. Escondido is an important site for our regional Air Monitoring Network and provides valuable air pollution data for our inland North County. An estimated timeline for the new Escondido site is TBD.

• San Ysidro (SAY) PM_{2.5} – Operational timeline – 2023

Construction to install Shelter to be performed in early 2023. Once completed, it will serve multiple capacities/programs: The District provides monthly updates to the EPA Grant Office on the status of the completion of the Shelter.

- EPA Border 2025 program (PM_{2.5} continuous and Black Carbon continuous analyzers).
- EPA NO₂ Near-road program for the location of the 2nd required site (true-NO₂ analyzer)
- Community Air Monitoring (State AB 617) for Environmental Justice monitoring.
- Camp Pendleton Operational timeline unknown

This station needs to be relocated (EPA R9 2017 TSA recommendation) elsewhere in the north coastal region. Data is often affected by emissions from the upwind motor pool. A weak node in the power grid, causes frequent power outages which have cascading ramifications: loss of data; equipment repairs; additional field QA/QC; etc. The District has significant site/base access complications. Once a new location is identified, the District will submit a 58.14 request to EPA to the EPA R9 Authorities for approval. All station relocations must be approved by EPA first. The District has no plans of relocating Camp Pendleton in calendar year 2023.

Section 2.4.1.2 Station Shutdowns (Temporary or Permanent):

• Chula Vista Temporary Shutdown – Temporary Shutdown timeline – TBD

The entire site will need to be demolished and rebuilt. The District does not plan on discontinuing monitoring at the station in calendar year 2023. The District will seek formal approval with EPA R9 Authorities before any action is taken.

Section 2.4.1.3 Station Additions

• Near the Otay Mesa Point-of-Entry (POE) – Operational timeline – TBD

The EPA Border 2025 Authorities have requested that PM_{2.5}-continuous and Black Carbon-continuous analyzers be located near the Otay Mesa POE. The District has received landlord approval to deploy a sampling platform at the State of California Highway Patrol Truck Safety Inspection facility along east Via de la Amistad. As with the San Ysidro site, this location will serve multiple purposes:

- EPA Border 2025 program (PM_{2.5} continuous and Black Carbon continuous analyzers).
- Ambient pollutants (exact parameters unknown)
- Community Air Monitoring (State AB 617) program (exact parameters unknown)

Section 2.4.2 Monitor/Sampler/Equipment Replacements, Shutdowns, and Additions

The section discusses the monitor/sampler changes in the network with respect to the pollutant or program.

Section 2.4.2.1 Replacements

• Continuous Particulate Matter (PM) Analyzers – Operational timeline –2023.

In 2019, the District recorded a maximum PM₁₀ concentration of 199 μg/m³. This has triggered the requirement for 6 to 10 monitors. The District operated sequential PM₁₀ monitors at four sites. This included Otay Mesa-Donovan, Lexington Elementary School in El Cajon and Chula Vista. In 2022, Continuous Federal Equivalence Method (FEM) Particulate Matter (PM_{2.5} and PM₁₀) Analyzers (T640x) were deployed at Camp Pendleton, Alpine, Otay Mesa-Donovan, Sherman Elementary School, and Lexington Elementary School. The District was awarded grant funding in 2022, as part of the American Rescue Plan (ARP), to purchase FEM analyzers to provide continuous PM data. The addition of the T640x analyzers (to measure both PM_{2.5} & PM₁₀) fulfills the requirement for a minimum of six analyzers for PM₁₀ monitoring. In 2023, the District will deploy additional T640x analyzers at Chula Vista, Rancho Carmel Dr. (Near-road site), Kearny Villa Road, and San Ysidro (2nd Near-road site. The District is also researching the PM_{1.0} reporting option on the analyzer.

Section 2.4.2.2 Shutdowns

• **Pb-TSP at McClellan Palomar Airport (CRQ)** – Shutdown timeline is unknown (EPA dependent) All the measured concentrations at the Palomar Airport location are well below 50% of the NAAQS. In 2017 the District petitioned the EPA to decommission lead sampling at this airport. EPA is not approving the previously requested discontinuation of Pb monitoring at Palomar Airport, but EPA Region 9 will continue to work with EPA Headquarters to determine discontinuation eligibility.

Section 2.4.2.3 Additions

• Ozone Field Transfer Standards – Operational timeline – TBD.

The District will add a second ozone analyzer to every station that measures for ozone. It will serve as an ozone transfer standard, so the ozone nightly automated QC checks can be official/Level 3 at all ozone sampling locations.

Section 2.4.2.4 Other

- Calibration & Audit Schedule Operational timeline TBD
- The District is adding the second near-road monitoring site in San Ysidro in 2023 and will incorporate scheduled calibrations and audits to the District schedule. Two additional stations (Escondido, Otay Mesa-CHP) in TBD will also need to be included at a future date. In addition, an independent QA section will be incorporated into the District to satisfy EPA requirements. Audits will be scheduled to be in accordance with EPA requirements detailed in the Code of Federal Regulations, Title 40 pertaining to ambient air monitoring programs. **Electronic Field Logbooks** Operational timeline TBD. The District is in the process of converting to a cloud-based electronic logbook for air monitoring programs and duties performed at air monitoring stations.

Section 2.5 List of Public Comments to this Report and the District Response(s)

This section will address comments from the public regarding inquires to this report. Questions that are emailed to the District are included below with a response. The Draft version of the 2022 Annual Network Report was posted on May 23, 2023. It was posted for 30 days to allow for public comment. The final draft of the 2022 Annual Network Report was submitted by July 1, 2023.

Note: No questions were submitted to the District for the 2022 Annual Network Report.

Chapter 3: Ozone (O₃)

Section 3.1 Ozone Introduction

Ambient level Ozone was sampled on a continuous (7/24) basis at locations throughout the SDAB (**Figure 3.1**) and referenced to the ozone standard of the year (Table 3-1). The sampling equipment are listed in Table 3-2. Please note:

• In 2015, the District was evicted from the Escondido site. The District is seeking an alternative location (TBD) for the air monitoring station in Escondido.

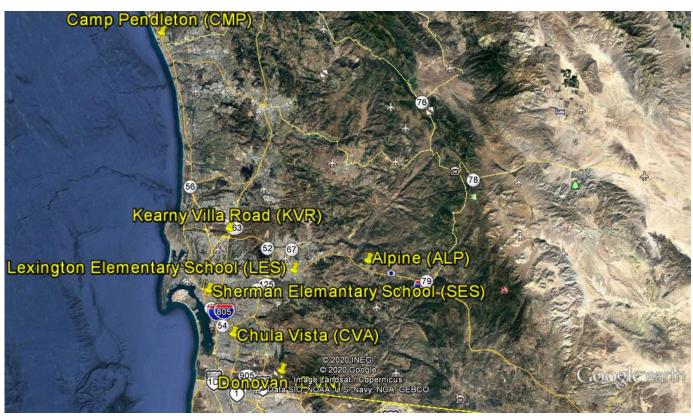
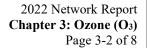



Figure 3.1 Ozone Network Map

Table 3-1 Ozone State and Federal Standards for the Year

Ambient Air Quality Standards										
Pollutant	Averaging	California Standards	National Standards							
	Time	Concentration	Primary	Secondary						
Ozone	1 hour	$0.09 \text{ ppm } (180 \text{ µg/m}^3)$	Not Applicable	Not Applicable						
(O_3)	8 hour	$0.07 \text{ ppm } (137 \mu\text{g/m}^3)$	$0.07 \text{ ppm} (137 \mu\text{g/m}^3)$	$0.07 \text{ ppm} (137 \mu\text{g/m}^3)$						

Table 3-2 Ozone Monitoring Network

	Abbreviation	ALP	CMP	CVA	LES	KVR	DVN	SES	
	Name	Alpine	Camp Pendleton	Chula Vista	Lexington Elementary School	Kearny Villa Rd.	Donovan	Sherman Elementary School	
	AQS ID	06-073-1006	06-073-1008	06-073-0001 06-073-1022		06-073-1016	06-073-1014	06-073-1026	
	Monitor Type SLAMS		SLAMS	SLAMS	SLAMS SLAM		SLAMS	SLAMS	
	Method	UV	UV	UV	UV	UV	UV	UV	
	Affiliation	Not Applicable	Not Applicable	Not Applicable	PAMS, Ncore	Not Applicable	Not Applicable	Not Applicable	
03	Spatial Scale	US	NS	NS	NS	NS	NS	NS	
	Site Type	HC	PE	PE	PE	PE	PE	PE	
	Objective (Federal)	PI, NAAQS	PI, NAAQS	PI, NAAQS	PI, NAAQS	PI, NAAQS	PI, NAAQS	PI, NAAQS	
	Equipment Thermo 49i		Thermo 49i	Thermo 49i	Thermo 49i	Thermo 49i	Thermo 49i	Thermo 49i	

Glossary of Terms

Monitor Type

E=EPA

O= Other

SLAMS= State & Local monitoring station

SPM= Special purpose monitor

CATAC= California Toxics Monitoring

Site Type

HC= Highest concentration

PE= Population exposure

SO= Source oriented

UPBD= Upwind background

G/B= General/Background

RT= Regional Transport

WRI= Welfare related impacts

QA= Quality assurance

Method (Sampling/Analysis)

CL= Chemiluminescence

CT= Low Volume, size selective inlet, continuous

FL= Fluorescence

HV= High volume

IR= Nondispersive infrared

SI= High volume, size selective inlet

SP= Low volume, size selective inlet, speciated

SQ= Low volume, size selective inlet, sequential

UV= Ultraviolet absorption

Canister= Evacuated stainless steel canisters

Cartridges= Di-nitrophenylhydrazine cartridges

FSL= Fused Silica Lined

Filter= Quartz filters

Auto= GCFID continuous

Monitor Designation

PRI= Primary
OAC= Collocated

Network Affiliation

BG= Border Grant

CSN STN= Trends Speciation

CSN SU= Supplemental Speciation

NATTS= National Air Toxics Trends Stations

NCORE= National Core Multi-pollutants

NR= Near-road

PAMS= Photochemical Assessment Monitoring

Spatial Scale

MI= Micro

MS= Middle

NS= Neighborhood

Objective (Federal)

NAAQS= Suitable for NAAQS comparison

Research= Research support

PI= Public Information

N/A= Not Applicable

O= Other

Section 3.2 Ozone Minimum Monitoring Requirements

The District is federally mandated to monitor O₃ levels in accordance with the CFR. This section will state the different monitoring requirements for each program, e.g. ambient, PAMS, Ncore, etc. that the District operates and references therein (Note: only the passages applicable/informative to the District are referenced). These monitors can serve as fulfilling other O₃ network requirements, e.g. ambient O₃ monitor can fulfill a PAMS O₃ monitor requirement.

The District meets or exceeds all minimum requirements for O₃ monitoring for all programs.

Section 3.2.1 Ozone Minimum Monitoring Requirements-Design Value Criteria (8-Hr)

The District is required to operate a minimum number of O₃ monitors irrespective of O₃ network affiliations. To ascertain the minimum number of monitors required, the Design Value (DV) must be calculated. The DV is derived by averaging the 4th highest for the last three years. Table 3-3 lists these DV requirements.

4.1(a) Ozone (O_3) Design Criteria¹

...local agencies must operate O_3 sites for various locations depending upon area size (in terms of population and geographic characteristics) and typical peak concentrations (expressed in percentages below, or near the O_3 NAAQS). Specific SLAMS O_3 site minimum requirements are included in Table D-2 of this appendix. The Ncore sites are expected to complement the O_3 data collection that takes place at single-pollutant SLAMS sites, and both types of sites can be used to meet the network minimum requirements. The total number of O_3 sites needed to support the basic monitoring objectives of public data reporting, air quality mapping, compliance, and understanding O_3 -related atmospheric processes will include more sites than these minimum numbers required in Table D-2 of this appendix....

Table D–2 of Appendix D to Part 58— SLAMS Minimum O₃ Monitoring Requirements

-ij		3=== 4			
MSA population	Most recent 3-year design	Most recent 3-year design			
	value concentrations	value concentrations			
	≥85% of any O ₃ NAAQS	<85% of any O₃ NAAQS			
350,000 - 4 million	2	1			

Table 3-3 Ozone Minimum Monitoring Requirements-Design Value Criteria (8-Hr)

			<u> </u>					
What is the	Is the	Is the	Does the	MSA	Population	Number of	Number of	Number of
Maximum	Maximum	Maximum	Maximum	&	Estimated	Monitors	Monitors	Monitors
8-Hr	8-Hr	8-Hr	8-Hr	County	from	Required	Active	Needed
Design Value?	Design Value	Design Value	Design Value		2020			
_	$\geq 85\%$ of the	< 85% of the	Meet the		Census ²			
	NAAQS?	NAAQS?	NAAQS?					
2020-2022	2020-2022	2020-2022	2020-2022					
(ppm)	(yes/no)	(yes/no)	(yes/no)	(name)	(#)	(#)	(#)	(#)
0.079	*****			San	3.3	2	7	0
0.079	yes	no	no	Diego	Million	2	/	U

¹(2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.1 "Ozone (O₃) Design Criteria", subsection 4.1(a), list the requirements needed to fulfill the Ozone (O₃) Design Criteria.

² Based on the official U.S Census statistics.

<u>Section 3.2.2 Ozone Minimum Monitoring Requirements-Maximum Concentration Site Design Value</u>

All Districts are required to categorize at least one monitor/sampling site in the air basin as an area of maximum concentration. A concentration is calculated for this site. The DV is derived by averaging the 4th highest for the last three years. Table 3-4 lists these maximum concentrations site requirements.

4.1(b) Ozone (O₃) Design Criteria³

Within an O_3 network, at least one O_3 site for each MSA, or CSA if multiple MSAs are involved, must be designed to record the maximum concentration for that particular metropolitan area...

Table 3-4 Ozone Minimum Monitoring Requirements-Maximum Concentration Site Design Value

Maximum	Maximum
8-Hr	8-Hr
Design Value	Design Value
Site	Concentration
2020-2022	2020-2022
(name)	(ppm)
Alpine	
(ALP)	0.079
06-073-1006	

Section 3.2.3 Ozone Minimum Monitoring Requirements-Ozone Season

All Districts are required to sample for ozone during ozone season as defined by Table D-3. Table 3-5 lists the ozone sampling season for the SDAB.

4.1(i) Ozone (O₃) Design Criteria⁴

Ozone monitoring is required at SLAMS monitoring sites only during the seasons of the year that are conducive to O_3 formation (i.e., "ozone season") as described below in Table D-3... Ozone monitors at Ncore stations are required to be operated year-round (January to December).

Table D-3 to Appendix D of part 58. Ozone Monitoring Season by State

State	Begin Month	End Month		
California	January	December		

Table 3-5 Ozone Minimum Monitoring Requirements-Ozone Sampling Season

Required	Active	Does Active		
Ozone	Ozone	Ozone		
Sampling Season	Sampling Season	Sampling Season		
		Meet		
		Requirements?		
(range)	(range)	(yes/no)		
January-December (annually)	January-December (annually)	yes		

³(2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.1 "Ozone (O₃) Design Criteria", subsection 4.1(b), list the requirements needed to fulfill the Ozone (O₃) Design Criteria.

⁴ (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.1 "Ozone (O₃) Design Criteria", subsection 4.1(i), list the requirements needed to fulfill the Ozone (O₃) Design Criteria.

Section 3.2.4 Ozone Minimum Monitoring Requirements-Ncore & PAMS

The District is required to operate Ncore and Photochemical Assessment Monitoring Stations (PAMS) sites. There are several associated requirements to operate these sites. One of the overlapping requirements is to operate O₃ monitors. Table 3-6 lists Ozone (O₃) Monitoring requirements.

Ncore

- 3. Design Criteria for Ncore Sites⁵
- (b) The Ncore sites must measure, at a minimum, PM2.5 particle mass using continuous and integrated/filter-based samplers, speciated PM2.5, PM10-2.5 particle mass, O3, SO2, CO, NO/NO_Y, wind speed, wind direction, relative humidity, and ambient temperature.

PAMS

- 5 Network Design for Photochemical Assessment Monitoring Stations (PAMS) and Enhanced Ozone Monitoring ⁶
- (a) State and local monitoring agencies are required to collect and report PAMS measurements at each Ncore Site...
- (b)... PAMS measurements include:...(3) Hourly averaged O3;

Table 3-6 Ozone Minimum Monitoring Requirements-PAMS

Number of	Number of	Number of O ₃	Location of
O ₃ Monitors	O ₃ Monitors	Monitors Needed	O ₃ Monitors
Required at Ncore	Active at	at PAMS & Ncore	at
& PAMS Sites	Ncore & PAMS	Sites	Ncore & PAMS
	Sites		Sites
(#)	(#)	(#)	(name)
			Lexington
1	1	0	Elementary School
1	1	U	(LES)
			06-073-1022

Section 3.2.5 Ozone Minimum Monitoring Requirements-Summary

Table 3-7 summarizes all the O₃ minimum monitoring requirements from Sections 3.2.1 to 3.2.4.

Table 3-7 Ozone Minimum Monitoring Requirements-Summary

Requirements for	Number of	Number of	Number of				
O ₃ Monitors	O ₃ Monitors	O ₃ Monitors	O ₃ Monitors				
for CFR Programs	Required	Active	Needed				
(name)	(#)	(#)	(#)				
CFR EPA Table D-2 only=	2	7	0				
Ncore & PAMS only=	1	1	0				

Section 3.3 Ozone Suitability for Comparison to the NAAQS

The CFR requires that for O₃ data to be used in regulatory determinations of compliance with the O₃ NAAQS, the O₃ monitors must be sited according to Federal Regulations⁷ and the sampling frequency

⁵ (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 3(b), "Network Design for NCore Sites.

⁶ (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 5(a)-(b)(3), "Network Design for Photochemical Assessment Monitoring Stations (PAMS)", -subpart (3) "Ozone Monitoring Requirements"

⁷ (2021) 40 CFR Part 58, Appendix E, "Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring" and Table E-4.

must be in accordance with Federal Regulations.⁸ All District O₃ monitors meet or exceed all minimum monitoring requirements and sampling frequencies, as to be able to be compared to the NAAQS. Table 3-8 summarizes these requirements.

Table 3-8 Ozone Suitability for Comparison to the NAAQS- Sampling Equipment

Parameter	Code	Unit	Code	Duration	Code	Equipment	Method	Code	Sampling Frequency	Method ID
Ozone O ₃	44201	ppm	007	1-Hr	1	Thermo 49 series	Ultraviolet absorption	047	7/24	EQOA-0880-047

Section 3.4 Ozone Concentrations for San Diego

Over the last few years, the ozone concentration has been fluctuating. This section will illustrate the different metrics for comparison.

Section 3.4.1 Ozone Concentrations for San Diego-for the Last 20 Years

San Diego has realized a significant decrease in the 3-yr average of the exceedance days for ozone and has seen a sharp decrease in its 8-hour Design Value (3-year average of the 4th highest 8-hour concentration) since 1990 (Table 3-9 and Figure 3.2).

Note: "Days Above the National 8-Hr Standard" in Table 3-9 reflect the ozone standard for that year.

Table 3-9 Ozone Concentrations for San Diego-for the Last 20 Years, 2002-2022

									-												
Design Value	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
(ppm)	0.095	0.093	0.089	0.086	0.088	0.089	0.092	0.089	0.088	0.082	0.081	0.080	0.079	0.079	0.081	0.084	0.084	0.082	0.079	0.078	0.079
Maximum 8-Hr Concentration (ppm)	0.100	0.103	0.095	0.089	0.100	0.092	0.109	0.097	0.088	0.093	0.083	0.083	0.081	0.084	0.091	0.095	0.082	0.084	0.102	0.080	0.088
Days above the National 8-Hr Standard	31	38	23	24	38	27	35	24	14	10	10	7	12	13	13	54	23	19	33	16	24

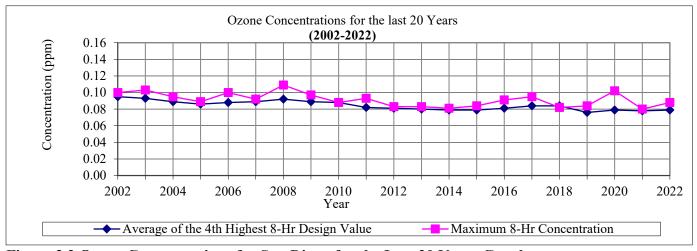


Figure 3.2 Ozone Concentrations for San Diego-for the Last 20 Years Graph

^{8 (2021) 40} CFR Part 58, Subpart B, Section 58.12, "Operating Schedules".

Section 3.4.2 Ozone Concentrations for San Diego-by Site for the Year

Table 3-10 lists the maximum ozone measurements for every ozone monitoring location and Figure 3.3 show the values graphically with respect to the National Standard for the year.

FOR INFORMATIONAL PURPOSES ONLY

NAAQS comparison requires DV calculations. Annual values are not comparable to the NAAQS

Table 3-10 Ozone Concentrations for San Diego-by Site for the Year, 2022

Table 5-10 Ozone Concentrations for San Diego-by Site for the Year, 2022													
	No.	Site	Site	Maximum 8-Hr	Number of Days	Annual							
			Abbreviation	Concentration	Above the	Average							
					National Standard								
	(#)	(name)	(name)	(ppm)	(#)	(ppm)							
	1	Camp Pendleton	CMP	0.067	0	0.042							
	2	Kearny Villa Rd.	KVR	0.083	2	0.045							
	3	Alpine	ALP	0.088	24	0.054							
	4	Lexington Elementary School	LES	0.088	2	0.047							
	5	Sherman Elementary School	SES	0.063	0	0.042							
	6	Chula Vista	CVA	0.066	0	0.043							
	7	Donovan	DVN	0.076	2	0.043							

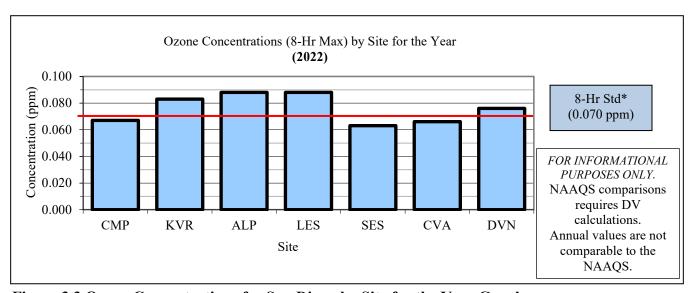


Figure 3.3 Ozone Concentrations for San Diego-by Site for the Year Graph

Section 3.4.3 Ozone Concentrations for San Diego-by Site for Design Value

Table 3-11 lists the maximum ozone measurements for every ozone monitoring location and Figure 3.4 shows the values graphically for the Design Value.

Table 3-11 Ozone Concentrations for San Diego-by Site for Design Value, 2020-2022

		-5 -01 ~ WIII -2 -0 5 0 ~	7 /2-11 - 12 - 12-8	,	
No.	Site	Site	Concentration of	Is the	Does the
		Abbreviation	8-Hr	8-Hr Design Value	8-Hr
			Design Value	\geq 85% of the	Design Value
				NAAQS?	Meet the
					NAAQS?
(#)	(name)	(name)	(ppm)	(yes/no)	(yes/no)
1	Camp Pendleton	CMP	0.061	yes	yes
2	Kearny Villa Rd.	KVR	0.069	yes	yes
3	Alpine	ALP	0.079	yes	no
4	Lexington Elementary School	LES	0.070	yes	no
5	Sherman Elementary School	SES	0.062	yes	yes
6	Chula Vista	CVA	0.064	yes	yes
7	Donovan	DVN	0.067	yes	yes

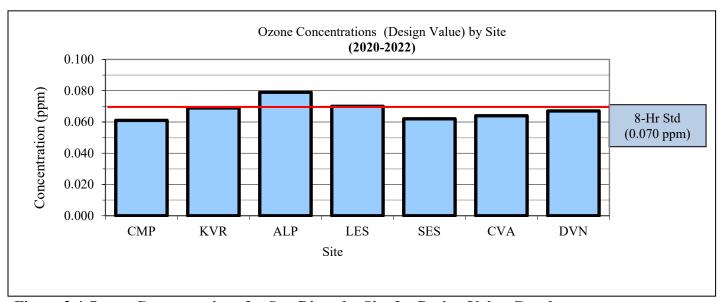


Figure 3.4 Ozone Concentrations for San Diego-by Site for Design Value Graph

Chapter 4: Nitrogen Dioxide (NO₂) and Reactive Oxides of Nitrogen (NO_y)

Section 4.1 Nitrogen Dioxide and Reactive Oxides of Nitrogen Introduction

Ambient level nitrogen dioxide was sampled on a continuous basis at locations throughout the SDAB (Figure 4.1) and referenced to the nitrogen dioxide standards of the year (Table 4-1). The sampling equipment are listed in Table 4-2. Please note:

• In 2015, the District was evicted from the Escondido site. The District is seeking an alternative location (TBD) for the air monitoring station in Escondido.

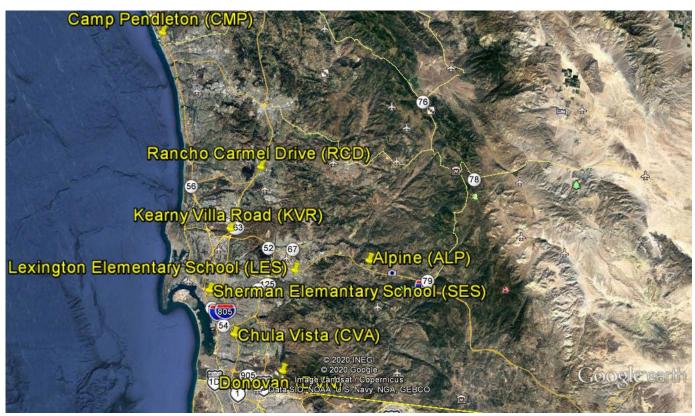
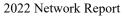



Figure 4.1 Nitrogen Dioxide & NO_v Network Map

Table 4-1 Nitrogen Dioxide State and National Standards for the Year*

Ambient Air Quality Standards					
D-1144	Averaging	California Standards	National Standards		
Pollutant	Time	Concentration	Primary	Secondary	
Nitro con Diovido	1 hour	$0.18 \text{ ppm } (339 \text{ µg/m}^3)$	$0.100 \text{ ppm} (188 \mu\text{g/m}^3)$	Not Applicable	
Nitrogen Dioxide (NO ₂)	Annual Arithmetic Mean	0.030 ppm (57 μg/m ³)	0.053 ppm (137 μg/m³)	0.053 ppm (137 μg/m³)	

^{*}The NO_y analyzer is non-regulatory; therefore there are no NAAQS to compare. The NO_x and NO_y measurements are comparable in the SDAB.

Chapter 4: Nitrogen Dioxide (NO₂) & Reactive Oxides of Nitrogen (NO_y) Page 4-2 of 12

Table 4-2 Nitrogen Dioxide & Reactive Oxides of Nitrogen Monitoring Network

	Abbreviation	ALP	CMP	CVA	LES	5	KVR	DVN	RCD	SES
	Name	Alpine	Camp Pendleton	Chula Vista	Lexington Elementary School		Kearny Villa Rd.	Donovan	Rancho Carmel Dr.	Sherman Elementary School
	AQS ID	06-073-1006	06-073-1008	06-073-0001	06-073-	1022	06-073-1016	06-073-1014	06-073-1017	06-073-1026
	Monitor Type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
	Designation	PRI	PRI	PRI	Not Applicable	PRI	PRI	PRI	PRI	PRI
	Method	CAPS	CAPS	CAPS	CL	CAPS	CAPS	CAPS	CAPS	CAPS
NO	Affiliation	Not Applicable	Not Applicable	Not Applicable	Ncore, PAMS	Ncore, PAMS	Not Applicable	SLAMS	NR	NR
% O ₂	Spatial Scale	US	NS	NS	NS	NS	NS	NS	MI	NS
Ż	Site Type	PE	PE	PE	PE	PE	PE	НС	SO	PE
	Objective (Federal)	PI, NAAQS	PI, NAAQS	PI, NAAQS	PI, Research	PL Research	PI, NAAQS	PI, NAAQS	PI, NAAQS	PI, NAAQS
	Equipment	Teledyne T500U	Teledyne T500U	Teledyne T500U	Thermo 42i-y	Teledyne T500U	Teledyne T500U	Teledyne T500U	Teledyne T500U	Teledyne T500U

Glossary of Terms

Monitor Type E=EPA

O= Other

SLAMS= State & Local monitoring station

SPM= Special purpose monitor

CATAC= California Toxics Monitoring

Site Type

HC= Highest concentration

PE= Population exposure

SO= Source oriented

UPBD= Upwind background

G/B= General/Background

RT= Regional Transport

WRI= Welfare related impacts

QA= Quality assurance

Method (Sampling/Analysis)

CL= Chemiluminescence

FL= Fluorescence

HV= High volume

IR= Nondispersive infrared

SI= High volume, size selective inlet

SP= Low volume, size selective inlet, speciated

SQ= Low volume, size selective inlet, sequential

UV= Ultraviolet absorption

Canister= Evacuated stainless steel canisters

Cartridges= Di-nitrophenylhydrazine cartridges

FSL= Fused Silica Lined

Filter= Quartz filters

Auto= GCF ID continuous

CAPS=Cavity Attenuated Phase Shift

Monitor Designation PRI=Primary

QAC=Collocated

Network Affiliation BG= Border Grant

CT= Low Volume, size selective inlet, continuous CSN STN= Trends Speciation

CSN SU= Supplemental Speciation

NATTS= National Air Toxics Trends Stations

NCORE= National Core Multi-pollutants

NR= Near-road

PAMS= Photochemical Assessment Monitoring

Spatial Scale

MI= Micro

MS= Middle

NS= Neighborhood

Objective (Federal)

NAAQS= Suitable for NAAQS comparison

Research Research support

PI= Public Information

N/A= Not Applicable

O= Other

Section 4.2 Nitrogen Dioxide Minimum Monitoring Requirements

The District is federally mandated to monitor NO₂ levels in accordance with the CFR. This section will state the different minimum monitoring requirements for each program, e.g. ambient, Near-road, PAMS, etc., that the District operates and the references therein (Note: only the passages applicable/informative to the District are referenced). These monitors can serve to fulfill other NO₂ network requirements, e.g. ambient NO₂ monitor can fulfill a PAMS NO₂ monitor requirement.

The District meets or exceeds all minimum requirements for NO₂ monitoring for all programs except for the following:

• Establishment of the 2nd Near-road location (expected start in 2023).

Section 4.2.1 Nitrogen Dioxide Minimum Monitoring Requirements - Near-road

To measure concentrations for some pollutants in communities located by roadways, the EPA instituted the Near-road monitoring program. Table 4-3 lists the Near-road monitors required for the SDAB.

4.3.2(a) Requirement for Near-road NO₂ Monitors ⁹

Within the NO_2 network, there must be one microscale near-road NO_2 monitoring station in each CBSA with a population of 1,000,000 or more persons to monitor a location of expected maximum hourly concentrations sited near a major road with high AADT counts as specified in paragraph 4.3.2(a)(1) of this appendix. An additional near-road NO_2 monitoring station is required for any CBSA with a population of 2,500,000 persons or more, or in any CBSA with a population of 1,000,000 or more persons that has one or more roadway segments with 250,000 or greater AADT counts to monitor a second location of expected maximum hourly concentrations. CBSA populations shall be based on the latest available census figures.

Table 4-3 Nitrogen Dioxide Minimum Monitoring Requirements -Near-road

MSA	Population	Number of	Are	Number of	Number of	Number of
&	Estimated	NO_2	Additional	Additional	NO_2	NO_2
County	from	Near-road	NO_2	NO_2	Near-road	Near-road
	2020	Monitors	Near-road	Near-road	Monitors	Monitors
	Census ¹⁰	Required	Monitors	Monitors	Active	Needed
			Required?	Required		
(name)	(#)	(#)	(yes/no)	(#)	(#)	(#)
San	3.3	2	YES	1	1	1
Diego	Million	2	ILS	1	1	1

Section 4.2.1.1 Nitrogen Dioxide Minimum Monitoring Requirements -Near-road (first site)

The first Near-road site must be sited in the area of the highest traffic count, adjusted for High Density (FE=Fleet Equivalency) vehicles. The first NO₂ near-road location is on Rancho Carmel Drive (RCD).

Section 4.2.1.2 Nitrogen Dioxide Minimum Monitoring Requirements -Near-road (second site)

The criteria for the second Near-road location are more flexible than the criteria for the first site. The second site is not necessarily the next location according to FE ranking. The EPA prescribes that the second site be selected so that it is differentiated from the first by one or more factors affecting traffic emissions and/or pollution transport (e.g. fleet mix, terrain, geographic area, different roadway, public health, etc). The District has successfully located an area near the San Ysidro Point-of-Entry (POE) at

¹⁰ Based on initial counts of official U.S Census statistics.

⁹ (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.3 "Nitrogen Dioxide (NO₂) Design Criteria", subpart 4.3.2 "Requirement for Near-road monitors"

Fire Station #29 (at Interstate-5 and Cottonwood Road), near an Environmental Justice community. This site has been:

- Fully endorsed by Casa Familiar, a Community Based Organization (CBO) with a focus on local Environmental Justice efforts.
- Endorsed by EPA-National Authorities.
- Verbally approved by EPA-National Authorities.
- Visited and verbally approved by EPA-Region 9 Authorities during the 2017 TSA.

Consequently, the District entered into an MOU with the City of San Diego Fire Department in 2019 and began the construction process in 2020 (operational timeline Early 2023). All Near-road candidate locations must be formally approved by EPA. This process requires filling out an EPA Near-road template. Table 4-4 is the formal application for the San Ysidro Near-road location.

Table 4-4 Nitrogen Dioxide Minimum Monitoring Requirements -Near-road (second site) Matrix

No.	Condition	Notes
1	Plan submitted by July 1, 2017	None
2	Submitted for public comment	Yes in the Annual Network Reports
3	Anticipated start-up	Early 2023
4	AQS#	06-073-1025
	Address and coordinates	32.552833°, -
5		117.047360°
	Comming & analysis mathed	198 W San Ysidro Blvd, San Diego, CA 92173 at Fire Station #29 NO ₂ (True-NO ₂)- Method 212
6	Sampling & analysis method	PM _{2.5} (continuous)- Method code 733
0		BC-1060 (continuous)- Method code 879
	Sampling & analysis duration	NO ₂ (True-NO ₂)- year-long & 24/7
7	1 2 7	PM _{2.5} (continuous)- year-long & 24/7
		BC-1060 (continuous)- year-long & 24/7
8	Any plans to remove or move the	No
0	monitor within 18 months?	
9	Monitoring objective & spatial scale	Public Information, NAAQS, Microscale for NO ₂
		Public Information, Microscale for all else
10	CBSA	San Diego-Carlsbad-San Marcos
11	CBSA population & year	3.3 million (from 2010census)
	Maximum AADT counts & year	FE AADT (estimated)= 90,002
12	(2018)	AADT = 65,000
12		HDc (estimated)= 2,778
		Ranking (County)= 231 (of 500 County-wide ranked segments)
		If you take out the road segments that cannot be used, because of their
		proximity to the 1 st near road site and take out the road segments that cannot
		be used due to planned and current highway expansion (Interstate 5 between
		State Routes 56 and 78), the
		Ranking (County, adjusted)= 203
		$FE\ AADT = (AADT - HDc) + (HDm\ x\ HDc)$
		HDc= High density count (trucks)
		HDm= High density multiplier (10)
13	Correct number of required Nox (NO ₂) monitors?	Two NO ₂ (Teledyne T500U True-NO2) monitors based on population
14	Are all road segments ranked?	Yes, by FE & AADT

15	How is fleet mix considered?	A high volume of passenger vehicles with a number of buses and diesel delivery style vehicles queue at the border crossing.
16	How is roadway design considered?	Station will be about 2 meters lower than the target road segment
17	How is congestion considered (congestion rating)?	A/B at the road segment, but about 1.5 km south (downwind) at the San Ysidro POE, "F".
18	How is terrain considered?	Some hills about 0.5 km downwind of the site. Otherwise, flat terrain for several kilometers upwind of the location
19	How is meteorology considered?	The typical wind direction varies by the time of day with nighttime/early morning hours, the winds are generally light out of the northeast, due to drainage and land breezes. These northeast winds are a stronger in the fall and winter, than other months. By late morning/afternoon, the winds are usually from the west or southwest. Occasionally, the winds will blow from the northwest. This is the onshore sea breeze flow that develops in the coastal environment almost every day. The only time this wind pattern is interrupted is if there is a storm system or a Santa Ana occurs. When onshore winds are blowing, emissions from the I-5 will be measured here.
20	How is population exposure considered?	Residential community (see "Other" sections at the end of the table)
21	1 st Near-road site?	Interstate-15 (I-15) at Rancho Carmel Dr. is on a hill overlooking I-15. This site is in the north mid-county along the busiest road segments in the air basin. Much of the multi-axle vehicles use this route to Los Angeles/Riverside/Inland Empire. 2nd Near-road site in San Ysidro will be even with I-5, will be at the southernmost point of the air basin, and will have a higher mix of cars compared to trucks with much longer idle times.
22	Distance from the target road?	30 meters to road
23	Will the vertical inlet be within 2-7 meters?	Yes
24	Will the probe distance from supporting structures be a least 1 meter away vertically or horizontally?	Yes
25	Will the air flow between the probe and the outside nearest edge of the target road segment be unobstructed?	Yes

The San Ysidro POE is the busiest in the U.S. Vehicles emit air pollution when moving and at idle. Residents and a local Community Based Organization (CBO) in the San Ysidro area, Casa Familiar, are concerned with the air quality impacts of the POE in their community along the freeways leading to and from the POE. Upon investigation using CalEnviroScreen, EJ Screen, NATA database, Customs data, and local health statistics, the San Ysidro area is greatly impacted by the POE. Air quality measurements in this area will help to determine if steps are needed to improve the air quality in these communities.

The San Ysidro POE averages about 2 million vehicles and 600,000 pedestrian crossings a month or approximately 70,000 vehicle and 20,000 pedestrian crossings a day. These are only the northbound (from Mexico to the United States) statistics, but a large percentage of the morning northbound crossings return southbound (from the United States to Mexico) in the evening. During peak commuting times, the POE has a long vehicle queue flowing from south to north in the morning and reversed in the evening. Wait times and queue length are day of the week and holiday dependent. Normally, the Mon-Fri traffic

experiences wait time of about 60 minutes, weekend traffic wait/engine idle times of 90-120 minutes are common, and holidays longer yet. Air pollution control devices on engines at idle operate inefficiently, thus increasing microscale air pollution impacts in the areas adjacent to the POE.

Road segments near the San Ysidro POE have a lower traffic count when compared to elsewhere in the County. The District believes the actual traffic count is higher, because of the long queues of cars (up to 3+ kilometers long, depending on metrics above) in the POE lanes. These queues of idling vehicles are expected to increase the effective traffic count, but there is no mechanism to account for this phenomenon.

The San Ysidro community is part of the South Region, as defined by the County of San Diego Health and Human Services Agency (HHSA). According to the most recent San Diego County HHSA health data portal (2011-2017), the South Region is routinely in the higher percentiles for coronary heart disease, stroke, asthma, and COPD for indicators for poor health, as compared to the other regions in the county. Numerous publications and studies have linked these health issues to air pollution, specifically, particulate matter, ozone, nitrogen dioxide, and diesel exhaust. Table 4-5 lists these health indicators and compares the rates to the other regions in the county. For 2011-2017 the South Region was:

Table 4-5 Common Air Pollution Related Health Issues in the South Region of San Diego

	8
Parameter	Rating
Coronary Heart Disease Related Deaths	2^{nd}
Coronary Heart Disease Related Hospitalizations	Alternates between 1st and 2nd
Coronary Heart Disease Related Emergency Room Visits	Alternates between 3 rd and 4 th
Stroke Related Deaths	5 th
Stroke Related Hospitalizations	2 nd
Stroke Related Emergency Room Visits	3 rd
Asthma Related Deaths	Insufficient data
Asthma Related Hospitalizations	3 rd
Asthma Related Emergency Room Visits	2 nd
COPD Related Deaths	5 th
COPD Related Hospitalizations	Alternates between 2 nd and 3 rd
COPD Related Emergency Room Visits	Alternates between 1st and 2nd

The EPA has several on-line science-based tools, CalEnviroScreen, EJScreen, National Ambient Air Toxics Assessment (NATA) database, etc., that identify pollution from multiple sources, the effects, and those communities most at risk. The community of San Ysidro has several of these elevated markers that indicate a higher vulnerability to air pollution. Compared to other areas, this location ranks in the higher percentile bracket for PM_{2.5}, Pesticide, and Toxic release emissions, as well as higher percentile for cardiovascular disease, linguistic isolation, poverty, and less than a high school education.

EPA, CARB, academia, and others have sponsored or participated in various special sampling projects along both sides of the San Ysidro-Otay Mesa border area. Findings have indicated that PM_{2.5} and toxic compounds are elevated and trend high with an increase in the border traffic/wait times and these data are not represented in current EPA pollution screening tools, e.g. EJScreen. District-run Toxics often record the highest concentrations in the SDAB. These indicators, in addition to having the busiest POE in the United States located in San Ysidro, lead to a need for additional air pollution monitoring in the community of San Ysidro.

In 2022, the International Border Community, which includes San Ysidro, was identified as an Environmental Justice area. The District will expand the Community Air Protection Program throughout the International Border Community for additional air pollution monitoring.

Section 4.2.1.3 Nitrogen Dioxide Minimum Monitoring Requirements -Near-road (summary)

This section summarizes the Near-road information (Table 4-6)

Table 4-6 Nitrogen Dioxide Minimum Monitoring Requirements -Near-road (summary)

MSA	County	Population	MAX	Location of	Is	Number of
		Estimated	AADT	Near-road	Near-road	Near-road
		from	(2020)	Sites	Site	Site(s)
		2020 Census			Active?	Needed
(name)	(name)	(#)	(#)	(#)	(yes/no)	(#)
San	San	3.3	332,356	Rancho Carmel Dr. (RCD) 06-073-1017	yes	0
Diego	Diego	Million	74,000	San Ysidro Blvd. (SAY)* 06-073-1025	NO	1

^{*}Site is in the construction phase; expected operational timeline is the 2023 year.

Section 4.2.2 Nitrogen Dioxide Minimum Monitoring Requirements-Area-wide

The District is required to designate a monitor that routinely measures high concentrations of nitrogen dioxide. This monitor cannot be used for Regional Administrator needs. Table 4-7 lists the Area-wide NO₂ Monitoring requirements for the SDAB.

4.3.3(a) Requirement for Area-wide NO_2 Monitoring 11 Within the NO_2 network, there must be one monitoring station in each CBSA with a population of 1,000,000 or more persons to monitor a location of expected highest NO_2 concentrations representing the neighborhood or larger spatial scales....

Table 4-7 Nitrogen Dioxide Minimum Monitoring Requirements-Area-wide

MSA	Population	Number of	Number of	Number of	Location of	Does
&	Estimated	Area-wide	Area-wide	Area-wide	Area-wide	Area-wide
County	from	NO ₂ Monitors	NO ₂ Monitors	NO ₂ Monitors	Site	Site
	2020	Required	Active	Needed		Meet
	Census					NAAQS?
(name)	(#)	(#)	(#)	(#)	(name)	(yes/no)
San	3.3	1	1	0	Donovan (DVN)	Mag
Diego	Million	1	1	U	06-073-1014	yes

^{11 (2021) 40} CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.3 "Nitrogen Dioxide (NO₂) Design Criteria", subpart 4.3.3 "Requirement for Area-wide Monitoring"

Section 4.2.3 Nitrogen Dioxide Minimum Monitoring Requirements-Regional Administrator

To obtain a pollutant profile in certain areas, often in or near Environmental Justice locations, the monitoring of NO₂ may be required by the EPA Regional Administrator. The Sherman station in Sherman Heights satisfies this requirement see Table 4-8 for this requirement.

4.3.4(a) Regional Administrator Required Monitoring 12

The Regional Administrators... require a minimum of forty additional NO_2 monitoring stations nationwide in any area... with a primary focus on siting these monitors in locations to protect susceptible and vulnerable populations.

Table 4-8 Nitrogen Dioxide Minimum Monitoring Requirements-Regional Administrator

Number of	Number of	Number of	Location of	Does
Regional	Regional	Regional	Regional	Regional
Administrator	Administrator	Administrator	Administrator	Administrator
NO ₂ Monitors	NO ₂ Monitors	NO ₂ Monitors	Site	Site
Required	Active	Needed		Meet
				NAAQS?
(#)	(#)	(#)	(name)	(yes/no)
			Sherman	
1	1	0	Elementary School	V
1	1	0	(SES)	Yes
			06-073-1026	

Section 4.2.4 Minimum Monitoring Requirements for true-NO₂, PAMS

The District is required to operate PAMS sites. There are several associated requirements to operate a PAMS site (see the PAMS chapter for more detail). One of the requirements is to operate a NO₂ monitor. Table 4-9 lists the PAMS NO₂ Monitoring requirements for the SDAB.

- 5(a) Network Design for Photochemical Assessment Monitoring Stations (PAMS) and Enhanced Ozone Monitoring ¹³
- (a) State and local monitoring agencies are required to collect and report PAMS measurements at each Ncore site required under paragraph 3(a) of this appendix located in a CBSA with a population of 1,000,000 or more, based on the latest available census figures.
- (b) PAMS measurements include...(4) Hourly averaged nitrogen oxide (NO), true nitrogen dioxide (NO₂), and total reactive nitrogen (NO_V);

Table 4-9 Minimum Monitoring Requirements for true-NO₂, PAMS

PAMS	Number of	Number of	Number of
Sites/Locations	true-NO ₂ Monitors	true-NO ₂ Monitors	true-NO ₂ Monitors
	Required at	Active at	Needed at
	PAMS Sites	PAMS Sites	PAMS Sites
(name)	(#)	(#)	(#)
Lexington			
Elementary School	1	1	0
(LES)	1	1	U
06-073-1022			

 ^{12 (2021) 40} CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.3 "Nitrogen Dioxide (NO₂) Design Criteria", subpart 4.3.4 "Requirement for Regional Administrator Monitoring"
 13 (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 5, "Network Design for Photochemical Assessment Monitoring Stations (PAMS)", part (b) "PAMS measurements include", -subpart (4) "Hourly averaged nitrogen dioxide"

Section 4.2.5 Reactive Oxides of Nitrogen Minimum Monitoring Requirements for Ncore & PAMS

The District is federally mandated to monitor NO_y levels in accordance with the CFR. This section will state the different minimum monitoring requirements for each program, e.g. Ncore, PAMS, etc. that the District operates and the references therein (Note: only the passages applicable/informative to the District are referenced). Table 4-11 summarizes these requirements.

Ncore

- 3.1 Design Criteria for Ncore Sites¹⁴
- (b) The Ncore sites must measure, at a minimum, PM2.5 particle mass using continuous and integrated/filter-based samplers, speciated PM2.5, PM10-2.5 particle mass, O3, SO₂, CO, NO/NO_Y, wind speed, wind direction, relative humidity, and ambient temperature.

PAMS

- 5 Network Design for Photochemical Assessment Monitoring Stations (PAMS) and Enhanced Ozone Monitoring ¹⁵
- (b) ... PAMS measurements include: ... (4) Hourly averaged nitrogen oxide (NO), true nitrogen dioxide (NO2), and total reactive nitrogen (NO $_{v}$);

Table 4-10 Reactive Oxides of Nitrogen Minimum Monitoring Requirements-PAMS & Ncore

Number of	Number of	Number of	Ncore & PAMS
NO _y Monitors	NO _y Monitors	NO _y Monitors	Sites
Required at Ncore	Active at	Needed at PAMS	
& PAMS Sites	Ncore & PAMS	& Ncore	
	Sites	Sites	
(#)	(#)	(#)	(name)
			Lexington
1	1	0	Elementary School
1	1	U	(LES)
			06-073-1022

Section 4.2.6 NO₂, true-NO₂, & NO₃ Minimum Monitoring Requirements-Summary

Table 4-11 summarizes all the NO₂ minimum monitoring requirements from Sections 4.2.1 to 4.2.5.

Table 4-11 NO₂, true-NO₂, & NO_y Minimum Monitoring Requirements-Summary

Requirements for	Number of	Number of	Number of	
NO ₂ Monitors	Monitors	Monitors	Monitors	
for CFR Programs	Required	Active	Needed	
(name)	(#)	(#)	(#)	
Near-road=	2	1	1*	
Area-Wide=	1	1	0	
Regional Administrator=	1	1	0	
PAMS for true-NO ₂ =	1	1	0	
Ncore & PAMS NO _y =	1	1	0	

^{*}Under Construction. Expected start date of early 2023.

14 (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 3(b), "Network Design for NCore Sites.

¹⁵ (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 5(a)-(b)(3), "Network Design for Photochemical Assessment Monitoring Stations (PAMS)", -subpart (4) "Hourly averaged nitrogen oxide (NO), true nitrogen dioxide (NO₂), and total reactive nitrogen (NO_y)"

Section 4.3 Nitrogen Dioxide Suitability for Comparison to the NAAQS

The CFR requires that for NO₂ data to be used in regulatory determinations of compliance with the NO₂ NAAQS, the NO₂ monitors must be sited according to Federal Regulations¹⁶ and the sampling frequency must be in accordance with Federal regulations¹⁷. All District NO₂ monitors meet or exceed all minimum monitoring requirements and sampling frequencies, as to be able to be compared to the NAAQS. Table 4-12 summarizes these requirements. There is no NAAQS for NO_y.

Table 4-12 Nitrogen Dioxide & Reactive Oxides of Nitrogen Sampling Equipment

	Parameter		Code	Unit	Code	Duration	Code	Equipment	Method	Code	Frequency	Method ID
Amb	Nitrogen dioxide	NO ₂	42602	ppm	007	1-Hr	1	Teledyne T500U	Cavity Attenuated Phase Shift (CAPS)	212	7/24	EQNA-0514-212
Ncore	Reactive Oxides of Nitrogen Not Applicable Nitric oxide	NOy NOy-NO NO	42600 42612 42601	ppb	008	1-Hr	1	Thermo 42i-y	Chemiluminescence	574	7/24	Not Applicable

Section 4.4 Nitrogen Dioxide Concentrations for San Diego

Over the last few years, the maximum 1-hour nitrogen dioxide concentration levels have been fluctuating between 55-86 ppb. This section will illustrate the different metrics for comparison.

Section 4.4.1 Nitrogen Dioxide Concentrations for San Diego-for the Last 20 Years

San Diego has measured a decrease in maximum NO₂ concentrations (Table 4-13) over the last twenty years. Over the last 15 years, the maximum 1-hour NO₂ concentrations have been below 0.10 ppm. Improved emission control technology on mobile sources and emissions should contribute to a decrease in NO₂ concentrations. Note: the "Days Above the National 1-Hr Standard." Row reflect the NO₂ standard for that year.

Table 4-13 Nitrogen Dioxide Concentrations for San Diego-for the Last 20 Years, 2002-2022

											_										
Maximum	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
1-Hr Concentration (ppm)	0.126	0.148	0.125	0.109	0.097	0.101	0.091	0.078	0.081	0.067	0.065	0.081	0.075	0.062	0.073	0.074	0.055	0.086	0.058	0.061	0.064
Maximum Annual Average (ppm)	0.022	0.021	0.023	0.024	0.024	0.022	0.019	0.017	0.015	0.014	0.013	0.014	0.013	0.016	0.017	0.016	0.014	0.014	0.013	0.013	0.015
Days above the National 1-Hr Standard	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

^{16 (2021) 40} CFR Part 58, Appendix E, "Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring" and Table E-4.

¹⁷ (2021) 40 CFR Part 58, Subpart B, Section 58.12, "Operating Schedules".

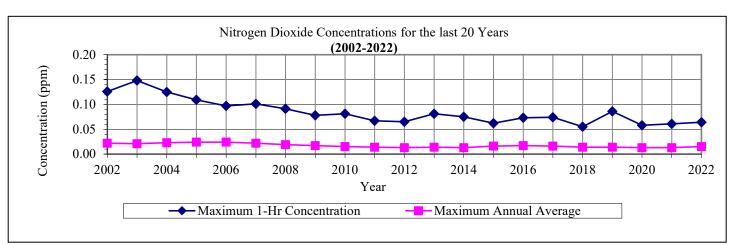


Figure 4.2 Nitrogen Dioxide Concentrations for San Diego-for the Last 20 Years Graph

Section 4.4.2 Nitrogen Dioxide Concentrations for San Diego-by Site for the Year

Table 4-14 lists the maximum nitrogen dioxide measurements and NO_y-NO for each nitrogen dioxide monitoring location and Ncore, respectively; Figure 4.3 shows the values graphically with respect to the National Standard for the year.

FOR INFORMATIONAL PURPOSES ONLY

NAAQS comparison requires DV calculations. Annual values are not comparable to the NAAQS

Table 4-14 Nitrogen Dioxide Concentrations for San Diego- by Site for the Year, 2022

No.	Site	Site Abbreviation	Maximum 1- Hr	Number of Days Above	Annual Average
		Abbieviation	Concentration	the	Average
				National	
				Standard	
(#)	(name)		(ppm)	(#)	(ppm)
1	Camp Pendleton	CMP	0.050	0	0.005
2	Rancho Carmel Dr.	RCD	0.056	0	0.015
3	Kearny Villa Rd.	KVR	0.051	0	0.008
4	Alpine	ALP	0.030	0	0.003
5	Lexington Elementary School	LES	0.036	0	0.008
6	Sherman Elementary School	SES	0.053	0	0.010
7	Chula Vista	CVA	0.052	0	0.009
8	Donovan	DVN	0.064	0	0.007

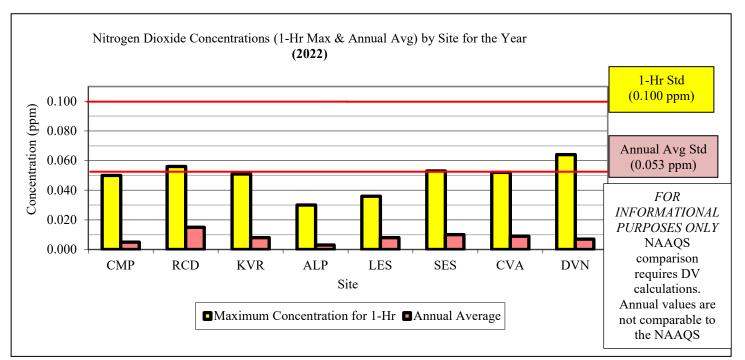


Figure 4.3 Nitrogen Dioxide Concentrations for San Diego-by Site for the Year Graph

Section 4.4.3 Nitrogen Dioxide Concentrations for San Diego-by Site for the Design Value

Table 4-15 lists the maximum nitrogen dioxide measurements and NO_y-NO for each nitrogen dioxide monitoring location and Ncore, respectively; **Figure 4.4** shows the values graphically with respect to the National Standard for the year.

Table 4-15 Nitrogen Dioxide Concentrations for San Diego-by Site for the Design Value, 2020-2022

No.	Site	Site	Maximum	Number of
		Abbreviation	Concentration	Days Above
			1-Hr	the
			DV	National
				Standard
(#)	(name)		(ppm)	(#)
1	Camp Pendleton	CMP	43	0
2	Rancho Carmel Dr.	RCD	48	0
3	Kearny Villa Rd.	KVR	37	0
4	Alpine	ALP	20	0
5	Lexington Elementary School	LES	33	0
6	Sherman Elementary School	SES	45	0
7	Chula Vista	CVA	42	0
8	Donovan	DVN	50	0

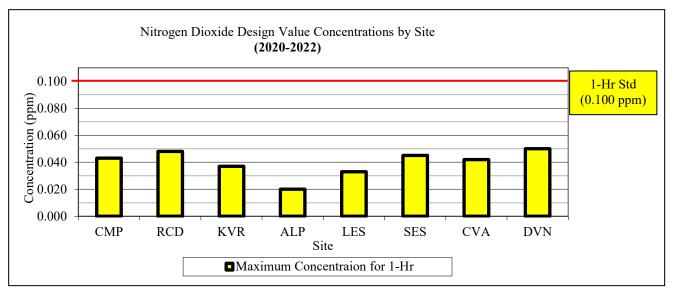


Figure 4.4 Nitrogen Dioxide Concentrations for San Diego-by Site for the Design Value Graph

Chapter 5: Carbon Monoxide (CO)

Section 5.1 Carbon Monoxide Introduction

Carbon monoxide (CO) was sampled on a continuous basis at two (2) locations in the SDAB (Figure 5.1 and Table 5-2) and referenced to the carbon monoxide standards of the year (Table 5-1). The sampling equipment are listed in Table 5-2. Trace level CO was sampled at the Lexington-Ncore site. For Ncore details, see Chapter 10:— Ncore for a complete list of all the requirements.

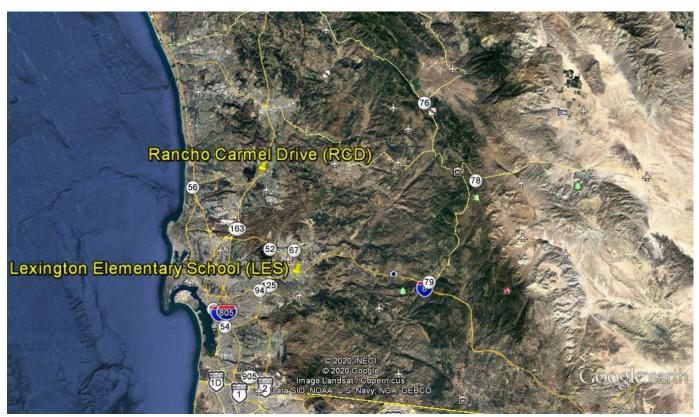


Figure 5.1 Carbon Monoxide Network Map

Table 5-1 Carbon Monoxide State and National Standards for the Year

Ambient Air Quality Standards							
Pollutant	Averaging	California Standards	California Standards National Standa				
Pollulani	Time	Concentration	Primary	Secondary			
Carbon Monoxide	1 hour	20 ppm (23 mg/m ³)	35 ppm (40 mg/m ³)	Not Applicable			
(CO)	8 hour	9 ppm (10 mg/m^3)	9 ppm (10 mg/m^3)	Not Applicable			

Table 5-2 Carbon Monoxide Monitoring Network

	Abbreviation	LES	RCD
	Name	Lexington Elementary School	Rancho Carmel Dr.
AQS ID		06-073-1022	06-073-1017
	Monitor Type	SLAMS	SLAMS
	Method	IR	IR
	Affiliation	NCORE, PAMS	NR
8	Spatial Scale	NS	MI
	Site Type	PE	SO
	Objective	PI,	PI,
	(Federal)	NAAQS	NAAQS
	Equipment	Thermo 48i-TLE	Thermo 48i-TLE

Glossary of Terms

Monitor Type

E= EPA

O= Other

SLAMS= State & Local monitoring station

SPM= Special purpose monitor

CATAC= California Toxics Monitoring

Site Type

HC= Highest concentration

PE= Population exposure

SO= Source oriented

UPBD= Upwind background

G/B= General/Background

RT= Regional Transport

WRI= Welfare related impacts

QA= Quality assurance

Method (Sampling/Analysis)

CL= Chemiluminescence

CT= Low Volume, size selective inlet, continuous

FL= Fluorescence

HV= High volume

IR= Nondispersive infrared

SI= High volume, size selective inlet

SP= Low volume, size selective inlet, speciated

SQ= Low volume, size selective inlet, sequential

UV= Ultraviolet absorption

Canister= Evacuated stainless steel canisters

Cartridges= Di-nitrophenylhydrazine cartridges

FSL= Fused Silica Lined

Filter= Quartz filters

Auto= GCFID continuous

Monitor Designation

PRI= Primary

QAC= Collocated

Network Affiliation

BG= Border Grant

CSN STN= Trends Speciation

CSN SU= Supplemental Speciation

NATTS= National Air Toxics Trends Stations

NCORE= National Core Multi-pollutants

NR= Near-road

PAMS= Photochemical Assessment Monitoring

Spatial Scale

MI= Micro

MS= Middle

NS= Neighborhood

Objective (Federal)

NAAQS= Suitable for NAAQS comparison

Research= Research support PI= Public Information

N/A= Not Applicable

O= Other

Section 5.2 Carbon Monoxide Minimum Monitoring Requirements

The District is federally mandated to monitor CO levels in accordance with the CFR. This section will state the different monitoring requirements for each program, e.g. ambient, PAMS, Ncore, Near-road, etc. that the District operates and references therein (Note: only the passages applicable/informative to the District are referenced). These monitors can serve as fulfilling other CO network requirements, e.g. ambient CO monitor can fulfill a PAMS CO monitor requirement.

The District meets or exceeds all minimum requirements for CO monitoring for all programs.

Section 5.2.1 Carbon Monoxide Minimum Monitoring Requirements-Near-road

In an effort to measure concentrations for some pollutants in communities located by highly trafficked roadways, the EPA instituted the Near-road monitoring program. Table 5-3 lists the Near-road requirements.

4.2 Carbon Monoxide (CO) Design Criteria¹⁸

4.2.1 General Requirements (a) Except as provided in subsection (b), one CO monitor is required to operate collocated with one required near-road NO_2 monitor, as required in Section 4.3.2 of this part, in CBSAs having a population of 1,000,000 or more persons. If a CBSA has more than one required near-road NO_2 monitor, only one CO monitor is required to be collocated with a near-road NO_2 monitor within that CBSA.

Table 5-3 Carbon Monoxide Minimum Monitoring Requirements-Near-road

MSA	Population	Are	Are	Number of	Number of	Number of
&	from	Near-road	Collocated	Collocated	Collocated	Collocated
County	2020	NO ₂ Monitors	CO Monitors	CO Monitors	CO Monitors	CO Monitors
	Census ¹⁹	Required	Required	Required	Active	Needed
		_				
(name)	(#)	(yes/no)	(yes/no)	(#)	(#)	(#)
San	3.3	Vac	Vas	1	1	0
Diego	Million	Yes	Yes	1	1	0

Section 5.2.2 Carbon Monoxide Minimum Monitoring Requirements-Regional Administrator

Table 5-4 lists the Regional Administrator Designated CO Monitoring requirements for the SDAB.

4.2.2(a) Regional Administrator Required Monitoring²⁰

The Regional Administrators, in collaboration with states, may require additional CO monitors above the minimum number of monitors required in 4.2.1 of this part...

¹⁸ (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.2 "Carbon Monoxide (CO) Design Criteria", section 4.21, "General Requirements

¹⁹ Based on official U.S Census statistics.

²⁰ (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.2.2 "Carbon Monoxide (CO) Design Criteria", subpart (a), "Regional Administrator Required Monitoring"

Table 5-4 Carbon Monoxide Minimum Monitoring Requirements-Regional Administrator

Number of	Number of	Number of		
Regional	Regional	Regional		
Administrator	Administrator	Administrator		
sites	sites	sites		
Required*	Active	Needed		
(#)	(#)	(#)		
0	0	0		

^{*} CO emissions in Barrio Logan were so far below the NAAQS that EPA approved the decommissioning of CO monitoring there.

Section 5.2.3 Carbon Monoxide Minimum Monitoring Requirements-Ncore

The District is required to operate a CO monitor as part of the Ncore multipollutant monitoring program. This program was designed to measure pollutants at lower levels, low ppb-ppt range. Table 5-5 lists the Ncore CO requirements.

3(b) Design Criteria for Ncore Sites²¹ The Ncore sites must measure, at a minimum...CO...

Table 5-5 Carbon Monoxide Minimum Monitoring Requirements-Ncore

	I IVIOIIOAIUC IVIIIII	mum momitorm	5 requirements in
Number of	Number of	Number of	Ncore
CO Monitors	CO Monitors	CO Monitors	Sites/Location
Required at	Active at	Needed at	
Ncore Sites	Ncore Sites	Ncore Sites	
(#)	(#)	(#)	(name)
			Lexington
1	1	0	Elementary School
1	1	U	(LES)
			06-073-1022

Section 5.2.4 Carbon Monoxide Minimum Monitoring Requirements-State (SIP)

The District must operate one non-source monitor as part of the 2004 Revision to the California State Implementation Plan (SIP) for Carbon Monoxide²². Table 5-6 summarizes these requirements.

Table 5-6 Carbon Monoxide Minimum Monitoring Requirements-State (SIP)

Number of	Number of	Number of	SIP
CO Monitors	CO Monitors	CO Monitors	Sites/Locations
Required	Active	Needed	
for the SIP	for the SIP	for the SIP	
(#)	(#)	(#)	(name)
			Lexington
1	1	0	Elementary School
1	1	U	(LES)
			06-073-1022

22 http://www.arb.ca.gov/planning/sip/co/final 2004 co plan update.pdf

²¹ (2021) 40 CFR Part 58, App. D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 3, "Design Criteria for NCore sites", subpart (b)

Section 5.2.5 Carbon Monoxide Minimum Monitoring Requirements-Summary

Table 5-7 summarizes all the CO minimum monitoring requirements.

Table 5-7 Carbon Monoxide Minimum Monitoring Requirements-Summary

Requirements for CO Monitors for CFR Programs	Number of CO Monitors Required	Number of CO Monitors Active	Number of CO Monitors Needed
(name)	(#)	(#)	(#)
Near-road=	1	1	0
Regional Administrator	0	0	0
Ncore=	1	1	0
SIP=	1	1	0

Section 5.3 Carbon Monoxide Suitability for Comparison to the NAAQS

The CFR requires that for CO data to be used in regulatory determinations of compliance with the CO NAAQS, the CO monitors must be sited according to Federal Regulations²³ and the sampling frequency must be in accordance with Federal regulations²⁴. All District CO monitors meet or exceed all minimum monitoring requirements and sampling frequencies, as to be able to be compared to the NAAQS. Table 5-8 summarizes these requirements.

Table 5-8 Carbon Monoxide Suitability for Comparison to the NAAQS-Sampling Equipment

	Parameter	Code	Unit	Code	Duration	Code	Equipment	Method	Code	Frequency	Method ID
Amb	Carbon monoxide* CC	42101	ppm	007	1-Hr	1	Thermo 48i-TLE	Nondispersive infrared	554	7/24	RFCA-0981-554
Ncore	Carbon monoxide Trace Level	42101	ppb	008	1-Hr	1	Thermo 48i-TLE	Nondispersive infrared	554	7/24	RFCA-0981-554

^{*}Carbon monoxide analyzer operates in the 20 ppm range.

Section 5.4 Carbon Monoxide Concentrations for San Diego

This section will illustrate the different metrics for comparison for carbon monoxide concentration levels.

Section 5.4.1 Carbon Monoxide Concentrations for San Diego-for the Last 20 years

In San Diego, CO concentrations have decreased over the years (Table 5-9) and is shown graphically in Figure 5.2. The 2003 Wildfires caused the SDAB to exceed the standards for CO, but the exceedances are considered an exceptional event and do not have a lasting impact in the air basin. Even with the last two wildfires in 2003 and 2007, the County still qualifies for attainment status. Note: the "Days Above the National Standard" row in Table 5-9 reflect the carbon monoxide standards for that year.

Table 5-9 Carbon Monoxide Concentrations for San Diego-for the Last 20 Years, 2002-2022

1 440			0011	, 10110	mu	~ 011		tt tI O I		~ • • • • •	2.05	0 101				• • • • • • • • • • • • • • • • • • • •	-00-		_		
Maximum	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
1-Hr Concentration (ppm)	8.5	12.7	6.9	7.9	10.8	8.7	5.6	4.6	3.9	3.5	4.4	3.2	3.8	3.1	2.2	2.0	1.9	4.1	3.3	3.0	2.2
Maximum 8-Hr Concentration (ppm)	4.7	10.6	4.1	4.7	3.6	5.2	3.5	3.4	2.5	2.4	3.8	2.6	3.0	2.0	1.7	1.5	1.4	2.5	1.7	1.8	1.2
Days above the National Standard	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

²⁴ (2021) 40 CFR Part 58, Subpart B, Section 58.12, "Operating Schedules"

²³ (2021) 40 CFR Part 58, Appendix E, "Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring" and Table E-4.

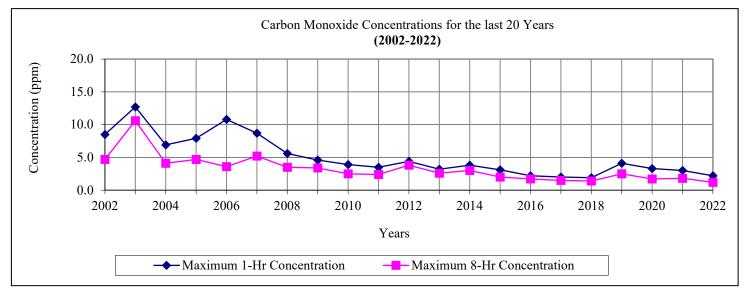


Figure 5.2 Carbon Monoxide Concentrations for San Diego-for the Last 20 Years Graph

Section 5.4.2 Carbon Monoxide Concentrations for San Diego-by Site for the Year

Table 5-10 lists the maximum carbon monoxide measurements for each carbon monoxide monitoring location and Ncore; Figure 5.3 shows the values graphically with respect to the National Standard.

FOR INFORMATIONAL PURPOSES ONLY Annual values are not comparable to the NAAQS

Table 5-10 Carbon Monoxide Concentrations for San Diego-by Site for the Year, 2022

No.	Site	Site	Maximum 8-Hr	Maximum 1-Hr	Number of Days	Annual
		Abbreviation	Abbreviation Concentration		Above	Average
					the	
					National Standard	
(#)	(name)		(ppm)	(ppm)	(#)	(ppm)
1	Lexington Elementary School	LES	1.1	1.5	0	0.51
2	Rancho Carmel Dr.	RCD	1.2	2.2	0	0.29

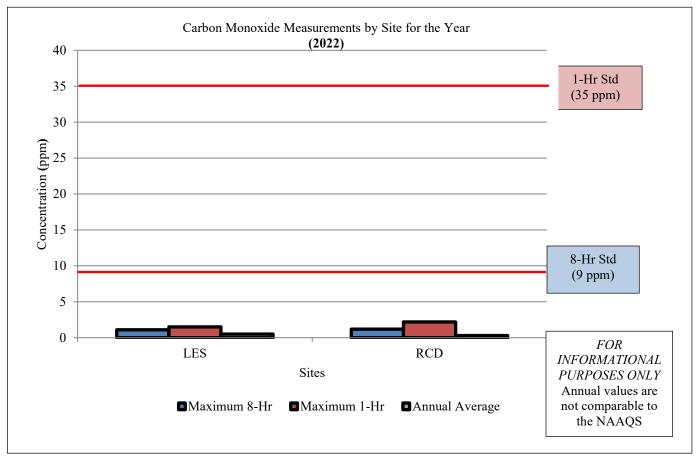


Figure 5.3 Carbon Monoxide Concentrations for San Diego-by Site for the Year Graph

Chapter 6: Sulfur Dioxide (SO₂)

Section 6.1 Sulfur Dioxide Introduction

Only trace level sulfur dioxide is sampled for at one (1) location (Figure 6.1) in the SDAB and is referenced to the sulfur dioxide standards of the year (Table 6-1). Trace-level SO₂ was sampled at the Lexington-Ncore site. Table 6-2 lists the equipment. See Chapter 10:– Ncore for detailed requirements.

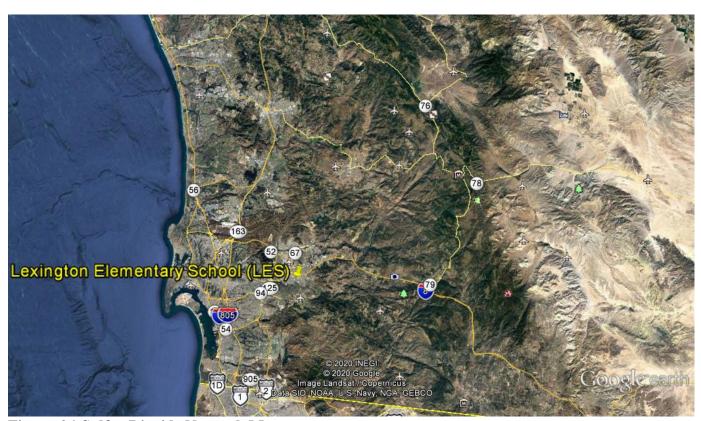



Figure 6.1 Sulfur Dioxide Network Map

Table 6-1 Sulfur Dioxide State and National Standards for the Year

tuble of Suntai Dioxide State and Patrional Standards for the Tear										
Ambient Air Quality Standards										
D-1144	Averaging	California Standards	National	Standards						
Pollutant	Time	Concentration	Primary	Secondary						
	1 hour	0.25 ppm (665 μg/m ³)	75 ppb (196 μg/m ³)	Not Applicable						
	3 hour	Not Applicable	Not Applicable	$0.5 \text{ ppm} (1300 \mu\text{g/m}^3)$						
Sulfur Dioxide (SO ₂)	24 hour	0.04 ppm (105 μg/m ³)	Not Applicable in San Diego	Not Applicable						
	Annual Arithmetic Mean	Not Applicable	Not Applicable in San Diego	Not Applicable						

Table 6-2 Sulfur Dioxide Monitoring Network

	Abbreviation	LES
	Name	Lexington Elementary School
	AQS ID	06-073-1022
	Monitor Type	SLAMS
	Method	FL
	Affiliation	Ncore
SO2	Spatial Scale	NS
	Site Type	PE
	Objective	PI,
	(Federal)	NAAQS
	Equipment	Thermo 43i-TLE

Glossary of Terms

Monitor Type

E= EPA

O= Other

SLAMS= State & Local monitoring station

SPM= Special purpose monitor

CATAC= California Toxics Monitoring

Site Type HC= Highest concentration

PE= Population exposure

SO= Source oriented

UPBD= Upwind background

G/B= General/Background

RT= Regional Transport

WRI= Welfare related impacts

QA= Quality assurance

Method (Sampling/Analysis)

CL= Chemiluminescence

CT= Low Volume, size selective inlet, continuous

FL= Fluorescence

HV= High volume

IR= Nondispersive infrared

SI= High volume, size selective inlet

SP= Low volume, size selective inlet, speciated

SQ= Low volume, size selective inlet, sequential

UV= Ultraviolet absorption

Canister= Evacuated stainless steel canisters

Cartridges= Di-nitrophenylhydrazine cartridges

FSL= Fused Silica Lined

Filter= Quartz filters

Auto= GCFID continuous

Monitor Designation

PRI= Primary

QAC= Collocated

Network Affiliation

BG= Border Grant

CSN STN= Trends Speciation

CSN SU= Supplemental Speciation

NATTS= National Air Toxics Trends Stations

NCORE= National Core Multi-pollutants

NR= Near-road

PAMS= Photochemical Assessment Monitoring

Spatial Scale

MI= Micro

MS= Middle

NS= Neighborhood

Objective (Federal)

NAAQS= Suitable for NAAQS comparison

Research= Research support PI= Public Information

N/A= Not Applicable

O= Other

Section 6.2 Sulfur Dioxide Minimum Monitoring Requirements

The District is federally mandated to monitor SO₂ levels in accordance with the CFR. This section will state the different monitoring requirements for each program, ambient, Ncore, etc. that the District operates and the references therein (Note: only the passages applicable/informative to the District are referenced). These monitors can serve as fulfilling other SO₂ network requirements, e.g. ambient SO₂ monitor can fulfill a PAMS SO₂ monitor requirement.

The District meets or exceeds all minimum requirements for SO₂ monitoring for all programs.

Section 6.2.1 Sulfur Dioxide Minimum Monitoring Requirements-Ncore

The District is required to operate an Ncore site. There are several associated requirements to operate this site. Table 6-3 lists Ncore Sulfur Dioxide (SO₂) monitoring requirements.

- 3.1 Design Criteria for Ncore Sites²⁵
- (b) The Ncore sites must measure, at a minimum, PM2.5 particle mass using continuous and integrated/filter-based samplers, speciated PM2.5, PM10-2.5 particle mass, O3, SO₂, CO, NO/NO_Y, wind speed, wind direction, relative humidity, and ambient temperature.

Table 6-3 Sulfur Dioxide Minimum Monitoring Requirements-Ncore

MSA	Number of	Number of	Number of	Met
&	Ncore	Ncore	Ncore	NAAQS?
County	SO ₂ Monitors	SO ₂ Monitors	SO ₂ Monitors	
	Required	Active	Needed	
	(#)	(#)	(#)	(yes/no)
San Diego	1	1	0	yes

Section 6.2.2 Sulfur Dioxide Minimum Monitoring Requirements-Ambient

The procedure to determine the minimum number of ambient level monitors required is different than the other gaseous criteria pollutants. It is based on the total SO_2 emissions in the air basin with respect to the population of the air basin. Table 6-4 lists these requirements.

4.4.2(a) Sulfur Dioxide Design Criteria Requirement for Monitoring by Population Weighted Emissions Index ²⁶ The population weighted emissions index (PWEI) shall be calculated by States for each core based statistical area (CBSA) they contain or share with another State or States for use in the implementation of or adjustment to the SO₂ monitoring network. The PWEI shall be calculated by multiplying the population of each CBSA, using the most current census data or estimates, and the total amount of SO₂ in tons per year emitted within the CBSA area, using an aggregate of the most recent county level emissions data available in the National Emissions Inventory for each county in each CBSA. The resulting product shall be divided by one million, providing a PWEI value, the units of which are million persons-tons per year. For any CBSA with a calculated PWEI value equal to or greater than 1,000,000, a minimum of three SO₂ monitors are required within that CBSA. For any CBSA with a calculated PWEI value equal to or greater than 5,000, but less than 1,000,000, a minimum of one SO₂ monitor is required within that CBSA.

²⁵

 ^{25 (2021) 40} CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 3(b), "Network Design for NCore Sites.
 26 (2021) CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.4 "Sulfur Dioxide (SO₂) Design Criteria, subpart 4.4.2(a) "Requirement for Monitoring by the Population Weighted Emissions Index"

If the PWEI is below a certain threshold, the EPA allows Districts the minimum required SO₂ monitor to be the Ncore SO₂ required monitor. Table 6-5 lists these requirements.

4.4 Sulfur Dioxide (SO₂) Design Criteria²⁷

4.4.2(1) The SO₂ monitoring site(s) required as a result of the calculated PWEI in each CBSA shall satisfy minimum monitoring requirements if the monitor is sited within the boundaries of the parent CBSA and is one of the following site types: population exposure, highest concentration, source impacts, general background, or regional transport. SO₂ monitors at Ncore stations may satisfy minimum monitoring requirements if that monitor is located within a CBSA with minimally required monitors under this part.

Table 6-4 Sulfur Dioxide Minimum Monitoring Requirements – 2020 EPA NEI SO2

	2			
MSA	Population	Total SO ₂	Total SO ₂	Calculated PWEI=
&	from	Emissions	Emissions	Total SO ₂ Emissions
County	2020 Census ²⁸	from	÷	X
		NEI	1,000,000	Population
(name)	(yes/no)	(tons/yr)	(TPY-1M)	(Mpeople-TPY)
San Diego	3.3 Million	539	0.000539	1,777.9

Table 6-5 Sulfur Dioxide Minimum Monitoring Requirements-Ambient

Calculated	Are the	Number of	Number of	Number of
PWEI	Emissions	Required	Active	Ambient
	<5,000	SO ₂ Monitors	SO ₂ Monitors	SO ₂ Monitors
	MP-TPY?	Monitors	Monitors	Needed
(MP-TPY)	(yes/no)	(#)	(#)	(#)
1,777.9	Yes	1	1	0

Section 6.2.3 Sulfur Dioxide Minimum Monitoring Requirements-Summary

Table 6-6 summarizes all the SO₂ minimum monitoring requirements from Sections 6.2.1 to 6.2.2.

Table 6-6 Sulfur Dioxide Minimum Monitoring Requirements-Summary

3			<u> </u>		
CFR Programs	Number of	Number of	Number of		
Requirements for	SO ₂ Monitors	Active	Needed		
SO ₂ Monitors	Required	SO ₂ Monitors	SO ₂ Monitors		
	•				
(name)	(#)	(#)	(#)		
PWEI	1	1	0*		
Ncore	1	1	0*		

^{*}For the SDAB, the PWEI is less than 5,000, which means the Ncore SO₂ monitor is allowed to be used in the count for required PWEI SO₂ monitors; therefore, the total count of SO₂ monitor is "1" in the SDAB.

²⁸ Based on initial counts of official U.S Census statistics.

²⁷ (2021) CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.4 "Sulfur Dioxide (SO₂) Design Criteria, subpart 4.4.2(1) "Requirement for Monitoring by the Population Weighted Emissions Index"

Section 6.3 Sulfur Dioxide Suitability for Comparison to the NAAQS

The CFR requires that for SO₂ data to be used in regulatory determinations of compliance with the SO₂ NAAQS, the SO₂ monitors must be sited according to Federal Regulations²⁹ and the sampling frequency must be in accordance with Federal regulations³⁰. All District SO₂ monitors meet or exceed all minimum monitoring requirements and sampling frequencies, as to be able to be compared to the NAAQS. Table 6-7 summarizes these requirements.

Table 6-7 Sulfur Dioxide Suitability for Comparison to the NAAQS-Sampling Equipment

	Parameter	Code	Unit	Code	Duration	Code	Equipment	Method	Code	Freque ncy	Method ID
Ncore	Sulfur dioxide SO ₂	42101	ppb	008	1-Hr	1 5-min	Thermo 43i-TLE	Fluorescence	560	7/24	EQSA-0486-060

Section 6.4 Sulfur Dioxide Concentrations for San Diego

Over the years, sulfur dioxide concentration levels have been decreasing. This section will illustrate the different metrics for comparison.

Section 6.4.1 Sulfur Dioxide Concentrations for San Diego-for the Last 20 Years

Emissions of sulfur dioxide (SO₂) have declined tremendously in California over the last 20 years, due to improved source controls and switching from fuel oil to natural gas for electric generation and industrial boilers. Note: the "Days Above National Standard" row in Table 6-8 reflects the SO₂ standards for that year and are shown graphically in Figure 6.2.

Table 6-8 Sulfur Dioxide Concentrations for San Diego-for the Last 20 Years, 2002-2022

1 4601		~ ~ ~ ~ ~	ui .	.02114	· ·			115 10			50 10				CUL	, - • •					
Maximum	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
1-Hr Concentration (ppm)	0.044	0.036	0.045	0.040	0.045	0.027	0.037	0.029	0.027	0.001	0.002	0.007	0.001	0.001	0.001	0.001	0.003	0.001	0.002	0.002	0.001
Maximum 24-Hrs Concentration (ppm)	0.012	0.011	0.015	0.013	0.011	0.009	0.008	0.009	0.008	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Maximum Annual Average (ppm)	0.004	0.004	0.006	0.005	0.004	0.003	0.003	0.004	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Days above the National Standard	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

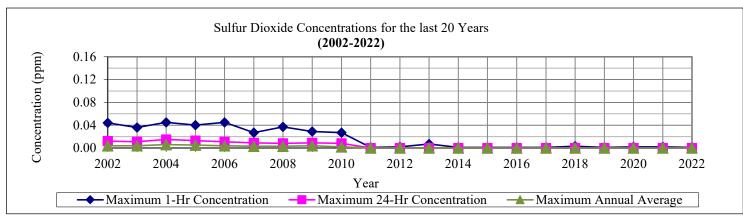


Figure 6.2 Sulfur Dioxide Concentrations for San Diego-for the Last 20 Years Graph

³⁰ (2021) 40 CFR Part 58, Subpart B, Section 58.12, "Operating Schedules"

²⁹ (2021) 40 CFR Part 58, Appendix E, "Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring" and Table E-4.

Section 6.4.2 Sulfur Dioxide Concentrations for San Diego-by Site for the Design Value

Table 6-9 lists the maximum sulfur dioxide measurements for the Ncore monitoring location and Figure 6.3 shows the values graphically with respect to the National Standard.

Table 6-9 Sulfur Dioxide Concentrations for San Diego-by Site for the Design Value, 2020-2022

			9 /
Site	Site	Design Value	Number of
	Abbreviation	Maximum Concentration	Days Above
		1-Hr	the
			National Standard
(site)		(ppm)	(#)
Lexington Elementary School	LES	0.001	0

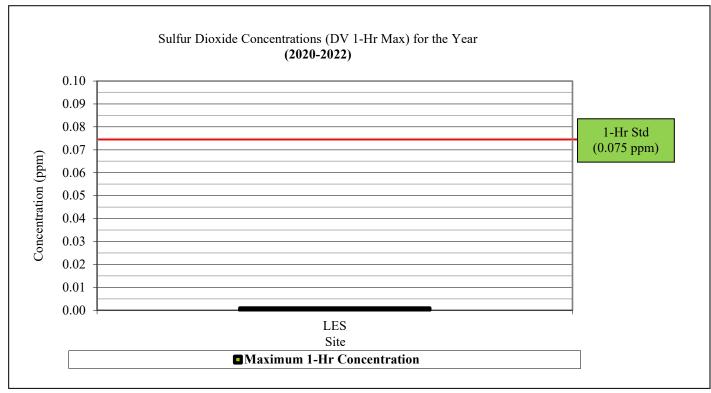


Figure 6.3 Sulfur Dioxide Concentrations for San Diego-by Site for the Design Value Graph

Chapter 7: Lead (Pb)

Section 7.1 Lead Introduction

Regulatory Lead (Pb) was sampled for at one location in the SDAB (Figure 7.1 and Table 7-2) and referenced to the lead standards of the year (Table 7-1). Source level lead was sampled at McClellan-Palomar airport.

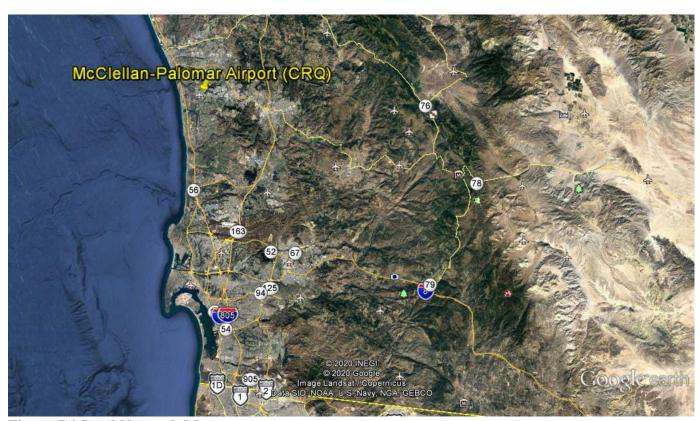


Figure 7.1 Lead Network Map

Table 7-1 Lead State and National Standards for the Year

= W = 0				
Ambient Air Quality Standards				
Pollutant	Averaging	California Standards	National Standards	
	Time	Concentration	Primary	Secondary
Lead (Pb)	30 Day Average	$1.5 \ \mu g/m^3$	Not Applicable	Not Applicable
	Calendar Quarter	Not Applicable	1.5 μg/m ³ (for certain areas)	1.5 μg/m ³ (for certain areas)
	Rolling 3-Month Average	Not Applicable	$0.15 \ \mu g/m^3$	$0.15 \ \mu g/m^3$

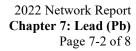


Table 7-2 Lead Sampling Network (regulatory collection and analysis)

	Abbreviation	CRQ					
	Name	Palomar Airport					
	AQS ID	06-073	3-1023				
	Monitor Type	SLAMS	SLAMS				
	Monitor Designation	PRI	QAC				
	Method	HV	HV				
	Affiliation	Not Applicable	Not Applicable				
-p	Spatial Scale	MI	MI				
Lead	Site Type	SO	QA				
	Objective (Federal)	NAAQS	NAAQS				
	Analysis	APCD	APCD				
	Frequency	1:6	1:6				
	Equipment	Tisch TE- 5170BLVFC+	Tisch TE- 5170BLVFC+				

Glossary of Terms

Monitor Type
E= EPA
O= Other
SLAMS= State & Local monitoring station
SPM= Special purpose monitor

CATAC= California Toxics Monitoring

Site Type
EXDN= Extreme downwind
HC= Highest concentration
MXO= Maximum ozone concentration
MXP= Maximum precursor impact
PE= Population exposure
SO= Source oriented
UPBD= Upwind background
G/B= General/Background
RT= Regional Transport
WRI= Welfare related impacts

QA= Quality assurance

Method (Sampling/Analysis)
CL= Chemiluminescence
CT= Low Volume, size selective inlet, continuous
FL= Fluorescence
HV= High volume
IR= Nondispersive infrared
SI= High volume, size selective inlet
SP= Low volume, size selective inlet, speciated
SQ= Low volume, size selective inlet, sequential
UV= Ultraviolet absorption

Canister= Evacuated stainless steel canisters

Cartridges= Di-nitrophenylhydrazine cartridges

Spatial Scale
MI= Micro
MS= Middle
NS= Neighborhood
US= Urban Scale

FSL= Fused Silica Lined

Filter= Quartz filters

Affiliation
BG= Border Grant
CSN STN= Trends Speciation
CSN SU= Supplemental Speciation
NATTS= National Air Toxics Trends Stations
NCORE= National Core Multi-pollutant
Monitoring Stations
NR= Near-road

PAMS= Photochemical Assessment Monitoring Stations UNPAMS= Unofficial PAMS site

Monitor Designation
PRI= Primary
QAC= Collocated
O= Other

Objective (Federal)
NAAQS= Suitable for NAAQS comparison
Research= Research support
PI= Public Information

Section 7.2 Lead Minimum Monitoring Requirements

The District is federally mandated to monitor Pb levels in accordance with the CFR. This section will state the different minimum monitoring requirements for each program, e.g. ambient, Ncore, Airports, etc. that the District operates and the references therein (Note: only the passages applicable/informative to the District are referenced).

The District meets or exceeds all minimum requirements for Pb monitoring for all programs.

Section 7.2.1 Lead Minimum Monitoring Requirements-Source (non-Airport) & Source (Airport)

The procedure to determine the minimum number of non-Airport source level monitors required is based on any non-Airport source emitting more than 0.5 tons/year of Pb emissions. Table 7-3 lists these requirements for non-Airport sources. The procedure to determine the minimum number of Airport source level monitors is the same, except that the threshold is 1.0 tons/year. Table 7-4 lists these requirements for Airport source level sampling. The sources and their Pb emissions are from the latest published EPA NEI database.

4.5(a) Lead (Pb) Design Criteria³¹

State and, where appropriate, local agencies are required to conduct ambient air Pb monitoring near Pb sources which are expected to or have been shown to contribute to a maximum Pb concentration in ambient air in excess of the NAAQS, taking into account the logistics and potential for population exposure. At a minimum, there must be one source-oriented SLAMS site located to measure the maximum Pb concentration in ambient air resulting from each non-airport Pb source which emits 0.50 or more tons per year and from each airport which emits 1.0 or more tons per year based on either the most recent National Emission Inventory (http://www.epa.gov/ttn/chief/eiinformation.html) or other scientifically justifiable methods and data (such as improved emissions factors or site-specific data) taking into account logistics and the potential for population exposure...

Table 7-3 Lead Minimum Monitoring Requirements-Source (non-Airport) based on the 2020 NEI

MSA	From NEI ³²	From NEI	From NEI	Number of	Number of	Number of
&	Any	What is the	What is the	Non-Airport	Non-Airport	Non-Airport
County	Non-Airport	Largest	Largest	Sources	Sources	Sources
	Pb Sources	Non-Airport	Non-Airport	Pb Monitors	Pb Monitors	Pb Monitors
	>0.5 TPY?	Pb Source?	Pb Emissions	Required	Active	Needed
			Rate?			
(name)	(yes/no)		(TPY)	(#)	(#)	(#)
San	No	Camp	0.23	0	0	0
Diego	NO	Pendleton	0.23	U	0	0

Table 7-4 Lead Minimum Monitoring Requirements-Source (Airport) based on the 2020 NEI

MSA	From NEI	From NEI	From NEI	Number of	Number of	Number of
&	Any	What is the	What is the	Airport	Airport	Airport
County	Airport	Largest	Largest Airport	Sources	Sources	Sources
	Pb Sources	Airport	Pb Emissions	Pb Monitors	Pb Monitors	Pb Monitors
	>=1.0 TPY?	Pb Source	Rate?	Required	Active	Needed
(name)	(yes/no)	(TPY)	(TPY)	(#)	(#)	(#)
San Diego	No	Montgomery Field	0.62	0	0	0

³¹ (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.5 "Lead (Pb) Design Criteria", subsection (a)

³² Most complete and recent EPA NEI Data base, 2017

Section 7.2.2 Lead Minimum Monitoring Requirements-Special Study (Airport)

One EPA regulation states that if an airport emits less than 1.0 TPY of Pb emissions, no source sampling is required. The EPA added a regulation that listed several airports to undergo temporary Pb sampling, regardless if the NEI listed Pb emissions were less than 1.0 TPY. If emissions exceeded the NAAQS by 50%, the sampler was to become permanent, or until the emissions were proven to be less than 50% of the NAAQS (over a minimum 3-yr period). Table 7-5 lists these requirements.

4.5(iii) Lead (Pb) Design Criteria³³

...agencies are required to conduct ambient air Pb monitoring near each of the airports listed in Table D-3A for a period of 12 consecutive months ...Any monitor that exceeds 50 percent of the Pb NAAQS on a rolling 3-month average (as determined according to 40 CFR part 50, Appendix R) shall become a required monitor under paragraph 4.5€ of this Appendix, and shall continue to monitor for Pb unless a waiver is granted ...

Table D-3A Airports to be Monitored for Lead

Airport	County	State
McClellan-Palomar	San Diego	CA
Gillespie Field	San Diego	CA

Table 7-5 Lead Minimum Monitoring Requirements – Airport (Special Study) Results

Names of	Was	Did the	Does the	Is	Number of
Airport	Airport	Airport	Airport	Continued Sampling	Continued Sampling
Monitors	Testing	Pass?	Require	Active?	Sites
Required	Done?		Continued Sampling?		Needed
(name)	(yes/no)	(yes/no)	(yes/no)	(yes/no)	(#)
McClellan-Palomar	yes	NO	YES	YES	0
Gillespie Field	yes	yes	no	Not Applicable	Not Applicable

*Gillespie Field

The Airport study at Gillespie Field officially concluded and it was determined by EPA to discontinue all lead sampling at this airport.

McClellan-Palomar

The Airport study at McClellan-Palomar Airport officially concluded and the airport did not pass the minimum tolerances. Consequently, permanent sampling was established. The concentrations for lead have met the waiver criteria (three continuous years of sampling at this location and less than 50% of the NAAQS) and the District has requested the cessation of regulatory lead sampling. At this time, EPA is not approving the District's requested discontinuation of Pb monitoring at Palomar Airport, but EPA Region 9 will continue to work with EPA Headquarters to determine discontinuation eligibility.

³³ (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.5 "Lead (Pb) Design Criteria", subsection (iii)

Section 7.2.3 Lead Minimum Monitoring Requirements-Regional Administrator

The EPA Regional Administrator may require additional lead sampling beyond what is required in section 4.5 particularly near industrial sources of lead. No industrial sources of lead have required additional monitoring as directed by the EPA Regional Administrator. Table 7-6 lists these requirements.

4.5 Lead (Pb) Design Criteria³⁴

The EPA Regional Administrator may require additional monitoring beyond the minimum monitoring requirements contained in paragraph 4.5(a) of this appendix ...

Table 7-6 Lead Minimum Monitoring Requirements-Regional Administrator

MSA	Number of	Number of	Number of
&	Regional	Regional	Regional
County	Administrator	Administrator	Administrator
	Pb Monitors	Pb Monitors	Pb Monitors
	Required	Active	Needed
(name)	(#)	(#)	(#)
San	0	0	0
Diego	U	U	U

Section 7.2.4 Lead Minimum Monitoring Requirements-QA Collocation & Filter Submittal to EPA

Table 7-7 summarizes the collocation requirements for quality assurance purposes.

3.4.4.1 A PQAO must³⁵ (a) Have 15 percent of the primary monitors (not counting non-source oriented Ncore sites in PQAO) collocated. Values of 0.5 and greater round up; and (b) Have at least one collocated quality control monitor (if the total number of monitors is less than three).

3.4.7... In addition³⁶, each year, four collocated samples from PQAOs with less than or equal to five ... must be sent to an independent laboratory, the same laboratory as the performance evaluation audit, for analysis.

Table 7-7 Lead Minimum Monitoring Requirements-QA Collocation & Filter Submittal to EPA

Number of	Number of	Number of	Number of	Number of	Location of	Are four
Pb-TSP	Pb-TSP	Pb-TSP	Pb-TSP	Pb-TSP	Collocated	collocated
Samplers	Samplers	Samplers	Samplers	Samplers	Site	samples sent to
Required	Active	Calculated for	Active for	Needed for		PEP laboratory
		Collocation	Collocation	Collocation		for analysis?
(#)	(#)	(#)	(#)	(#)	(name)	(yes/no)
1	1	1 x (15%) = 1	1	0	Palomar (CRQ) 06-073-1023	Yes

³⁴ (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.5 "Lead (Pb) Design Criteria", subsection (c)

^{35 (2021) 40} CFR Part 58, Appendix A, Section 3, Measurement Quality Check Requirements, chapter 3.4, "Pb", section 3.4.4.1 (a)-(b)

³⁶ (2021) 40 CFR Part 58, Appendix A, Section 3, Measurement Quality Check Requirements, chapter 3.4, "Pb", section 3.4.7

Section 7.2.5 Lead Minimum Monitoring Requirements-Summary

Table 7-8 summarizes the Pb minimum monitoring requirements.

Table 7-8 Lead Minimum Monitoring Requirements-Summary

tubic / o Leau Minimum Monic	able 7-6 Lead William Worldoning Requirements-Summary										
CFR Programs	Number of	Number of	Number of								
Pb-TSP Samplers	Pb-TSP Samplers	Pb-TSP Samplers	Pb-TSP Samplers								
Requirements	Required	Active	Needed								
(name)	(#)	(#)	(#)								
Source (non-Airport) =	0	0	0								
Source (Airport)=	0	0	0								
Airport Study=	0	0	0								
Airport Study Exceedance=	1*	1	0								
Regional Administrator=	0	0	0								
QA Collocation=	1	1	0								
QAC filters sent to EPA for analysis	4	4	0								

^{*} The District is seeking EPA approval to discontinue regulatory lead sampling at Palomar Airport.

Section 7.3 Lead Suitability for Comparison to the NAAQS

The CFR requires that for Pb data to be used in regulatory determinations of compliance with the Pb NAAQS, the Pb monitors must be sited according to Federal Regulations³⁷ and the sampling frequency must be in accordance with Federal regulations. All District Pb monitors meet or exceed all minimum monitoring requirements and sampling frequencies, as to be able to be compared to the NAAQS. Table 7-9 and **Table 7-10 summarize these requirements.**

Table 7-9 Lead Suitability for Comparison to the NAAQS-Sampling Equipment

Parameter		Code	Unit	Code	Duration	Code	Equipment	Method	Code	Frequency	Method ID
Lead	Pb	14129	μg/m ³ LC	105	24-Hr	7	Tisch TE-5170 BLVFC+	ICP/MS Acid filter extract with hot nitric acid	192	1:6	EQL-0710-192

Section 7.3.1 Lead Suitability for Comparison to the NAAQS – Operating Frequency

The CFR requires that for Pb-TSP data to be used in regulatory determinations of compliance with the Pb NAAQS, the Pb-TSP samplers' sampling frequency must be in accordance with Federal regulations. All District Pb-TSP samplers meet or exceed all minimum monitoring requirements for the sampling frequency and can be compared to the NAAQS.

Table 7-10 summarizes these requirements.

58.12 Operating schedules

For PM_{10} samplers, a 24-hour sample must be taken from midnight to midnight (local standard time) to ensure national consistency. The minimum monitoring schedule for the site in the area of expected maximum concentration shall be based on the relative level of that monitoring site concentration with respect to the 24-hour standard as illustrated in Figure 1 below.... The minimum sampling schedule for all

other sites in the area remains once every six days.

³⁷ (2021) 40 CFR Part 58, Appendix E, "Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring" and Table E-4.

Table 7-10 Lead Suitability for Comparison to the NAAQS-Sampling Equipment

What is the	What is the	Does the
Minimum	Actual	Actual
EPA	Sampling	Sampling
Permitted	Frequency?	Frequency
Sampling		Meet EPA
Frequency?		Specifications?
(#)	(#)	(yes/no)
1:6	1:6	yes

Section 7.4 Lead Concentrations for San Diego

Over the years, lead concentrations decreased so much that ambient sampling was no longer required. In 2012, the EPA lowered the NAAQS and sampling resumed. This section will illustrate the different metrics for comparison.

Section 7.4.1 Lead Concentrations for San Diego-for the Last 20 Years

The rapid decrease in lead emissions since the 1980s can be attributed primarily to phasing out the lead in gasoline in the 1970s by EPA and CARB. Note: the "Days Above National Standard" row in Table 7-11 and Figure 7.2 reflect the lead standard for that year. No Testing (NT) was done in the SDAB from 1997 until 2012. The measured concentration for 2012 is from the Ncore location, which is categorized as neighborhood scale and representative concentrations. The airport sampler is categorized as source impact and microscale, and is not considered representative concentrations.

Table 7-11 Lead Concentrations for San Diego-for the Last 20 Years, 2002-2022

Maximum	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Calendar Quarter (µg/m³)	NT	0.006	0.007	0.010	0.015	0.010	0.020	0.020	0.020	0.020	0.020	0.010									
Maximum Rolling 3-Month Average (μg/m³)	NT	0.006	0.007	0.011	0.015	0.010	0.020	0.020	0.020	0.020	0.020	0.010									
Days above the National Standard	NT	0	0	0	0	0	0	0	0	0	0	0									

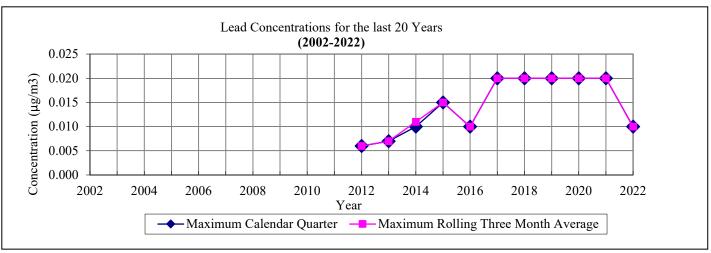


Figure 7.2 Lead Concentrations for San Diego-for the Last 20 Years

Section 7.4.2 Lead Concentrations for San Diego-by Site for the Year

Table 7-12 lists the maximum lead measurements for each lead monitoring location; Figure 7.3 shows the values graphically with respect to the National Standard.

Table 7-12 Lead Concentrations for San Diego-by Site for the Year, 2022

uble 7 12 Dead Concentrations for Sun Diego by Site for the Teary 2022											
Site	Site	Maximum	Design Value	Number of							
	Abbreviation	Rolling	2022	Days Above							
		3-Month		the							
		Average		NAAQS							
		2022		2022							
(name)		$(\mu g/m^3)$	$(\mu g/m^3)$	(#)							
Palomar Airport*	CRQ	0.010	0.020	0							

^{*}Source impact and microscale monitors.

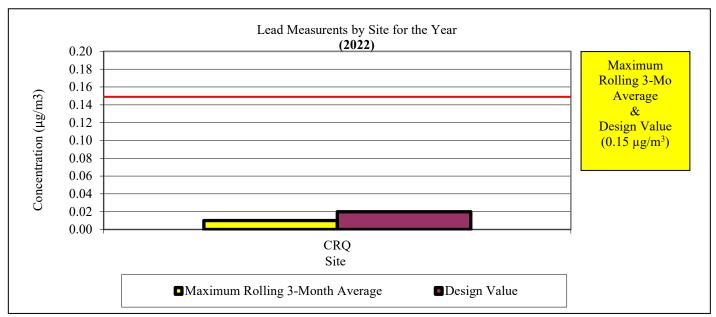


Figure 7.3 Lead Concentrations for San Diego-by Site for the Year Graph

The measured concentrations at the Palomar Airport location have been consistently well below the NAAQS and they have been for three (3) continuous years of operation. At this time, EPA is not approving the District's requested discontinuation of Pb monitoring at Palomar Airport, but EPA Region 9 will continue to work with EPA Headquarters to determine discontinuation eligibility.

Chapter 8: Particulate Matter 2.5 µm (PM_{2.5})

Section 8.1 PM_{2.5} Introduction

PM_{2.5} was sampled on both a continuous basis and sequentially (on a schedule set by the EPA) at several locations in the SDAB (Figure 8.1 and Table 8-2) and were referenced to the PM_{2.5} standards of the year (Table 8-1), when applicable. The equipment is listed in Table 8-2. Please note:

• In 2015, the District was evicted from the Escondido site. The District is seeking an alternative location (TBD) for the air monitoring station in Escondido.

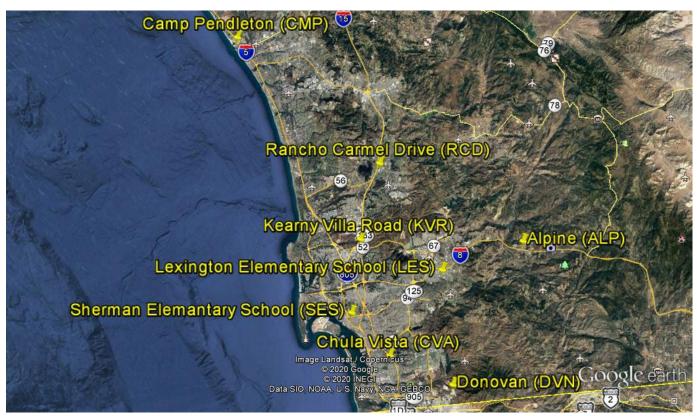
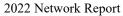


Figure 8.1 PM_{2.5} Network Map

Table 8-1 PM_{2.5} State and National Standards for the Year

		Ambient Air Quality Stand	lards	
Pollutant	Averaging	California Standards	National S	Standards
	Time	Concentration	Primary	Secondary
Fine	24 hour	Not Applicable	$35 \mu g/m^3$	$35 \mu g/m^3$
Particulate Matter (PM _{2.5})	Annual Arithmetic Mean	12 μg/m ³	12 μg/m ³	15 μg/m ³


2022 Network Report Chapter 8: Particulate Matter 2.5 µm (PM_{2.5})

Page 8-2 of 22

Table 8-2 PM_{2.5} Sampling Network

	Tubic	0 2 1 11.	12.5 Duii	ipning iv	CUITOTIK												
Site	Abbreviation	Al	LP	CN	ΜР	CVA		LES		KVI	ર	DVI	N		SES		RCD
S	Site Name	Alp	oine	Camp P	endleton	Chula Vista	1	Lexington Elementary School	ol	Kearny Vi	illa Rd.	Dono	van	Ele	Sherman ementary School	ol	Rancho Carmel Dr.
	AQS ID	06-073	3-1006	06-073	3-1008	06-073- 0001		06-073-1022		06-073-	1016	06-073-	1014		06-073-1026		06-073-1017
	Monitor Type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
-	Designation	0	0	0	0	PRI	0	PRI	0	PRI	QAC	0	0	0	0	PRI	PRI
-	Method	CT (non- FEM)	BS	CT (non-FEM)	BS	SQ (FRM)	CT (non- FEM)	SQ (FRM)	BS	SQ (FRM)	SQ (FRM)	CT (non-FEM)	BS	CT (non-FEM)	BS	SQ (FRM)	SQ (FRM)
(ba)	Affiliation	N/A	N/A	N/A	N/A	N/A	NCore	NCore	NCore	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NR
eciated)	Spatial Scale	US	US	US	US	NS	US	NS	NS	NS	NS	NS	NS	NS	NS	NS	MS
ds-uoi	Site Type	PE	PE	PE	PE	PE	PE	НС	PE	PE	PE	PE	PE	PE	PE	PE	SO
PM2.5 (1	Objective (Federal)	PI, Research	NAAQS	PI, Research	NAAQS	NAAQS	PI, Research	NAAQS	NAAQS	NAAQS	NAAQS	PI, Research	NAAQS	PI, Research	NAAQS	NAAQS	NAAQS
	Analysis	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD	APCD
	Frequency	7/24	7/24	7/24	7/24	1:3	7/24	1:1	7/24	1:3	1:6	7/24	7/24	7/24	7/24	1:3	1:3
	Equipment	Met One BAM- 1020	Teledyne T640x*	Met One BAM-1020	Teledyne T640x*	Met One E-SEQ- FRM	Met One BAM- 1020	Met One E-SEQ- FRM	Teledyne T640x*	Met One E-SEQ-FRM	Met One E-SEQ- FRM	Met One BAM-1020	Teledyne T640x*	Met One BAM-1020	Teledyne T640x*	Met One E-SEQ- FRM	Met One E-SEQ-FRM
	Monitor Type						SLAMS	SLAMS									
-	Method						SP & SQ	SP & SQ									
<u> </u>	Affiliation						NCORE, CSN, STN	NCORE, CSN, STN									
iatec	Spatial Scale						NS	NS									
(speciated)	Site Type		<u> </u>				PE	PE					<u> </u>				
PM _{2.5} (Objective (Federal)			·			Research	Research									
-	Analysis						EPA	EPA									
	Frequency						1:3	1:3					<u> </u>				
	Equipment						URG- 3000N	Met One SuperSASS									

^{*}Teledyne T640x replaced BAM-1020 mid-year. They operate as a Federal Equivalence Method (FEM). Installation dates: ALP (9/8/2022), CMP (8/30/2022), LES (8/11/2022), DVN (8/2/2022), SES (5/16/2022). Remaining PM_{2.5} sites will have T640x analyzers installed in early 2023.

Chapter 8: Particulate Matter 2.5 µm (PM_{2.5})

Page 8-3 of 22

Glossary of Terms

Monitor Type

E=EPA

O= Other

SLAMS= State & Local monitoring station

SPM= Special purpose monitor

CATAC= California Toxics Monitoring

Site Type

HC= Highest concentration

PE= Population exposure

SO= Source oriented

UPBD= Upwind background

G/B= General/Background

RT= Regional Transport

WRI= Welfare related impacts

QA= Quality assurance

Method (Sampling/Analysis)

CL= Chemiluminescence

CT= Low Volume, size selective inlet, continuous

FL= Fluorescence

HV= High volume

IR= Nondispersive infrared

SI= High volume, size selective inlet

SP= Low volume, size selective inlet, speciated

SQ= Low volume, size selective inlet, sequential

UV= Ultraviolet absorption

Canister= Evacuated stainless steel canisters

Cartridges= Di-nitrophenylhydrazine cartridges

FSL= Fused Silica Lined

Filter= Quartz filters

Auto= GCFID continuous

BS = Broadband Spectroscopy

Monitor Designation

PRI=Primary

QAC= Collocated

Network Affiliation

BG= Border Grant

CSN STN= Trends Speciation

CSN SU= Supplemental Speciation

NATTS= National Air Toxics Trends Stations

NCORE= National Core Multi-pollutants

NR= Near-road

PAMS= Photochemical Assessment Monitoring

Spatial Scale

MI= Micro

MS = Middle

NS= Neighborhood

Objective (Federal)

NAAQS= Suitable for NAAQS comparison

Research= Research support

PI= Public Information

N/A= Not Applicable

O= Other

Section 8.2 PM_{2.5} Manual Minimum Monitoring Requirements

The District is federally mandated to monitor PM_{2.5} levels in accordance with the CFR. This section will state the needs for PM_{2.5} manual method samplers only. The District uses the PM_{2.5} manual sampler to satisfy all minimum monitoring requirements, other than those requirements that specifically state PM_{2.5} continuous sampler. This section will also state the different monitoring requirements for each program, e.g. ambient, manual, NCore, speciated, etc. that the District operates and references therein (Note: only the passages applicable/informative to the District are referenced). These monitors can serve as fulfilling other PM_{2.5} network requirements, e.g. ambient PM_{2.5} sampling can fulfill an NCore requirement.

The District meets or exceeds all minimum requirements for PM_{2.5} manual monitoring for all programs except for the following:

• Change in the number of PM_{2.5} FRM SIP samplers, due to relocations.

<u>Section 8.2.1 PM_{2.5} Manual Minimum Monitoring Requirements-Design Criteria (24-Hr. & Annual Average)</u>

The District is required to operate a minimum number of $PM_{2.5}$ samplers irrespective of the $PM_{2.5}$ network affiliation. To ascertain the minimum number of samplers required for ambient air sampling, the Highest Concentration value must be calculated. Table 8-3 – Table 8-5 summarize these requirements.

4.7.1(a) Fine Particulate Matter (PM_{2.5}) Design Criteria.³⁸

... agencies must operate the minimum number of required PM 2.5 SLAMS sites listed in Table D-5 of this appendix...

Table D–5 of Appendix D to Part 58—PM_{2.5} Minimum Monitoring Requirements

MSA population	Most recent 3-year	Most recent 3-year
	design value ≥85% of	design value <85%
	any PM _{2.5} NAAQS	of any PM _{2.5} NAAQS
(#)	(#)	(#)
>1,000,000	3	2

Table 8-3 PM_{2.5} Manual Minimum Monitoring Requirements-Design Criteria (Annual Average)

Annual	Annual	Is the	Is the	Does the
Design Value	Design Value	Annual	Annual	Annual
	Location	Design Value	Design Value	Design Value
		\geq 85% of the	< 85% of the	Meet the
2020-2022		NAAQS?	NAAQS?	NAAQS?
$(\mu g/m^3)$	(name)	(yes/no)	(yes/no)	(yes/no)
9.8	Lexington Elementary School (LES) 06-073-1022	NO	yes	yes

^{38 (2021) 40} CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.7 "Fine Particulate Matter (PM_{2.5}) Design Criteria", subsection 4.7.1 General Requirements (a)

Table 8-4 PM_{2.5} Manual Minimum Monitoring Requirements-Design Criteria (24-Hr)

				··· 8 · · · · · · · · · · · · · · · · ·
24-hr	Annual	Is the	Is the	Does the
Design Value	Design Value	24-hr	24-hrl	24-hr
	Location	Design Value	Design Value	Design Value
		\geq 85% of the	< 85% of the	Meet the
2020-2022		NAAQS?	NAAQS?	NAAQS?
$(\mu g/m^3)$	(name)	(yes/no)	(yes/no)	(yes/no)
	Chula Vista			
23	(CVA)	NO	yes	yes
	06-073-0001			

Table 8-5 PM_{2.5} Manual Minimum Monitoring Requirements-Ambient

MSA	Population	Number of	Number of	Number of
&	Estimated	Required	Active	Needed
County	from	PM _{2.5} Manual	PM _{2.5} Manual	PM _{2.5} Manual
	2020	Samplers	Samplers	Samplers
	Census ³⁹	•	•	•
(name)	(#)	(#)	(#)	(#)
San	3.3	2	5	0
Diego	Million	3	3	U

Section 8.2.2 PM_{2.5} Manual Minimum Monitoring Requirements-State (SIP)

In 1998, the San Diego Air Pollution Control District, in partnership with the California Air Resources Board (ARB), developed a PM-fine monitoring network to implement the new PM_{2.5} NAAQS and is outlined in the "California Particulate Matter Monitoring Network Description". ⁴⁰ Table 8-6 summarizes these requirements.

The EPA Region 9 governing authority approved the ARB's statewide distribution plan for the placement of the PM_{2.5} monitors within each district and the location of the collocated monitors for each district to satisfy the sampling and quality assurance requirements of 40 CFR Part 58. Any changes to the PM_{2.5} network in the SDAB will be undertaken in partnership and with advisement of ARB. If a PM_{2.5} monitor is violating the NAAQS and the District is forced to relocate the station or the sampler, the District will provide a minimum 30-day period for public review, prior to the relocation of the monitor or the station.

Table 8-6 PM_{2.5} Manual Minimum Monitoring Requirements- State (SIP)

MSA	Population	Number of	Number of	Number of
&	Estimated	PM _{2.5} Manual	PM _{2.5} Manual	PM _{2.5} Manual
County	from	Samplers	Samplers	Samplers
	2020 Census	Required	Active	Needed
		(non- microscale)		
(name)	(#)	(#)	(#)	(#)
San Diego	3.3 Million	5	4*	1*
Diego	IVIIIIIUII			

^{*} The Near-road is microscale and cannot be used in this total

³⁹ Based on the most recent official U.S Census statistics.

⁴⁰ http://www.arb.ca.gov/aqd/pm25/pmfdsign.htm

<u>Section 8.2.3 PM_{2.5} Manual Minimum Monitoring Requirements-Site of Expected Maximum Concentration (24-Hr & Annual Average)</u>

The District is required to designate PM_{2.5} sampling locations for specific purposes or needs. One of these designations is called the site of expected maximum concentrations with respect to the 24-Hr and annual average NAAQS. For the District these locations can change yearly. For both the 24-Hr and annual average NAAQS, these locations routinely alternate between Escondido (when operational), Lexington, and Sherman monitoring locations. Table 8-7 summarize these requirements.

4.7.1(b)(1)Fine Particulate Matter ($PM_{2.5}$) Design Criteria.⁴¹ At least one monitoring station is to be sited at neighborhood or larger scale in an area of expected maximum concentration.

Table 8-7 PM_{2.5} Manual Minimum Monitoring Requirements-Site of Expected Maximum Concentration (Annual Average) & 24-Hr

concentration (1 minut	ir ir i i i i i i i i i i i i i i i i i
Site of	Site of
Expected	Expected
Maximum	Maximum
Concentration for	Concentration for
Design Value	24-Hr
Annual NAAQS	NAAQS
(name)	(name)
Lexington	Lexington
Elementary School	Elementary School
(LES)	(LES)
06-073-1022	06-073-1022

Section 8.2.4 PM_{2.5} Manual Minimum Monitoring Requirements-Near-road

The District is required to have a PM_{2.5} sampler at a near-road location. The District is required to operate two near-road sites. The District installed a PM_{2.5} FRM sampler at the first near-road site (RCD), thus fulfilling our near-road particulate requirement. Table 8-8 lists these requirements.

4.7.1(b)(2) Fine Particulate Matter ($PM_{2.5}$) Design Criteria.⁴² For CBSAs with a population of 1,000,000 or more persons, at least one $PM_{2.5}$ monitor is to be collocated at a near-road NO_2 station required in section 4.3.2(a) of this appendix.

^{41 (2021) 40} CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.7 "Fine Particulate Matter (PM_{2.5}) Design Criteria", subsection 4.7.1 General Requirements, (b) "Specific Design Criteria for PM2.5, (1) 42 (2021) 40 CFR Part 58. Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring" Section 4. "Pollutant-Specific Design Criteria for

⁴² (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.7 "Fine Particulate Matter (PM_{2.5}) Design Criteria", subsection (b)(2)

Table 8-8 PM_{2.5} Manual Minimum Monitoring Requirements-Near-road

MSA	Population	Are	Number of	Number of	Number of	Near-road
&	Estimated	$PM_{2.5}$	PM _{2.5}	PM _{2.5}	$PM_{2.5}$	Site
County	from	Near-road	Near-road	Near-road	Near-road	Location
	2020	Samplers	Samplers	Samplers	Samplers	Name
	Census	Required?	Required?	Active	Needed	
(name)	(#)	(yes/no)	(#)	(#)	(#)	(name)
San	3.3					Rancho Carmel Dr.
Diego	million	YES	1	1	0	(RCD)
Diego	IIIIIIIIII					06-073-1017

Section 8.2.5 PM_{2.5} Manual Minimum Monitoring Requirements-Site of Poor Air Quality

The District is required to designate $PM_{2.5}$ sampling locations for specific purposes or needs. One of these designations is called the site of Poor Air Quality with respect to the 24-Hr and annual average NAAQS (Note: the site that serves as fulfilling the requirement for the location of maximum concentration cannot also be the site of poor air quality). Table 8-9 summarizes these requirements.

4.7.1(b)(3) Fine Particulate Matter (PM_{2.5}) Design Criteria⁴³ For areas with additional required SLAMS, a monitoring station is to be sited in an area of poor air quality.

Table 8-9 PM_{2.5} Manual Minimum Monitoring Requirements-Site of Poor Air Quality

Site of
Poor
Air Quality
(name)
Sherman
Elementary School
(SES)
06-073-1026

Section 8.2.6 PM_{2.5} Manual Minimum Monitoring Requirements-NCore

The District is required to operate a $PM_{2.5}$ sampler as part of the NCore multipollutant monitoring program. This program was designed to measure pollutants at lower levels, as well as other pollutants. For the NCore program, the District is required to collect $PM_{2.5}$ and PM_{coarse} ($PM_{10-2.5}$) data. PM_{coarse} data is obtained by operating collocated PM_{10} and $PM_{2.5}$ samplers of the same make and model and on the same sampling frequency. The $PM_{2.5}$ concentrations are then subtracted from the PM_{10} concentrations to get the PM_{coarse} fraction. Table 8-10 lists the NCore $PM_{2.5}$ requirements.

3(b) Design Criteria for NCore Sites⁴⁴

The NCore sites must measure, at a minimum, $PM_{2.5}$ particle mass using continuous and integrated/filter-based samplers, speciated $PM_{2.5}$, $PM_{10-2.5}$ particle mass, speciated $PM_{10-2.5}$...

4.8.1(a)Coarse Particulate Matter (PM $_{10-2.5}$) Design Criteria. ⁴⁵ The only required monitors for PM $_{10-2.5}$ are those required at NCore Stations.

⁴³ (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.7 "Fine Particulate Matter (PM_{2.5}) Design Criteria", subsection (b)(3)

^{44 (2021) 40} CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 3, "Design Criteria for NCore sites", subpart (b) 45 (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.8 "Coarse Particulate Matter (PM_{2.5}) Design Criteria", subsection 4.8.1(a)

Table 8-10 PM_{2.5} Manual Minimum Monitoring Requirements-NCore

Number of	Number of	Number of	Can this	Number of	NCore
PM _{2.5} Samplers	PM _{2.5} Samplers	PM _{2.5} Samplers	PM _{2.5} Sampler	PM _{2.5} Samplers	Site
Required at	Active at	Needed at	be used for	Needed for	Location
NCore Sites	NCore Sites	NCore Sites	PMcoarse?	PMcoarse?	Name
(#)	(#)	(#)	(yes/no)	(#)	(name)
. ,	. ,	` /	,	. ,	Lexington
					Elementary School
1	1	0	yes	0	•
					(LES)
					06-073-1022

Section 8.2.7 PM_{2.5} Manual Minimum Monitoring Requirements- QA Collocation

For quality assurance purposes, there are requirements for analyzers or samplers of the same make and model to be collocated. In 1998, the District and the ARB gave criteria for choosing a site for collocation. Collocation guidance is from the CFR. Table 8-11 summarizes these requirements.

3.2.3.1 Collocated Quality Control Sampling Procedures for $PM_{2.5}^{46}$ For each distinct monitoring method designation (FRM or FEM) that a PQAO is using for a primary monitor, the PQAO must have 15 percent of the primary monitors of each method designation collocated (values of 0.5 and greater round up)...

Table 8-11 PM_{2.5} Manual Minimum Monitoring Requirements- QA Collocation

Number of	Collocation				
PM _{2.5} Samplers	Site				
Required from	Active	Needed for	Active for	Needed for	Name
Table D-5		Collocation	Collocation	Collocation	
(#)	(#)	(#)	(#)	(#)	(name)
	\ /	()	()	()	(======)
	· /	(**)	(11)	(1.7)	Kearny Villa Rd.
3	5	5 x (15%) = 1	1	0	

The District meets or exceeds all minimum requirements for PM_{2.5} collocation.

Section 8.2.8 PM_{2.5} Manual Minimum Monitoring Requirements-Summary

Table 8-12 summarizes all the $PM_{2.5}$ manual minimum monitoring requirements from Sections 8.2.1 to 8.2.7.

⁴⁶ (2021) 40 CFR Part 58, Appendix A, Section 3.2.3.1, Quality System Requirements, PM_{2.5}, 3.2.3.1

Table 8-12 PM_{2.5} Manual Minimum Monitoring Requirements-Summary

CFR Programs	Number of	Number of	Number of
PM _{2.5} Samplers	PM _{2.5} Samplers	PM _{2.5} Samplers	PM _{2.5} Samplers
Requirements	Required	Active	Needed
(name)	(#)	(#)	(#)
CFR EPA Table D-2 only=	3	5	0
California Particulate Matter Network (non-microscale)=	5	4	1
DV Maximum Concentration, 24-Hr =	1	1	0
DV Maximum Concentration, Annual Average=	1	1	0
Expected Maximum Concentration, 24-Hr =	1	1	0
Expected Maximum Concentration, Annual Average=	1	1	0
Near-road=	1	1	0
Poor Air Quality=	1	1	0
NCore=	1	1	0
QA Collocation=	1	1	0

Section 8.3 PM_{2.5} Continuous Minimum Monitoring Requirements

The District is federally mandated to monitor PM_{2.5} levels in accordance with the CFR. This section will state the needs for PM_{2.5} continuous method samplers only and will state the different monitoring requirements for each program, e.g. ambient, NCore, etc. that the District operates and references therein (Note: only the passages applicable/informative to the District are referenced).

The District meets or exceeds all minimum requirements for PM_{2.5} continuous monitoring for all programs.

Section 8.3.1 PM_{2.5} Continuous Minimum Monitoring Requirements-Ambient

The District is required to operate a minimum number of $PM_{2.5}$ continuous samplers irrespective of the $PM_{2.5}$ network affiliation. Table 8-13 summarizes these requirements.

4.7.2 Fine Particulate Matter ($PM_{2.5}$) Design Criteria. Requirement for Continuous $PM_{2.5}$ Monitoring ⁴⁷ The State, or where appropriate, local agencies must operate continuous $PM_{2.5}$ analyzers equal to at least one-half (round up) the minimum required sites listed in Table D-5 of this appendix.

Table 8-13 PM_{2.5} Continuous Minimum Monitoring Requirements-Ambient

		<u> </u>	
Minimum Number of	Minimum Number of	Number of	Number of
PM _{2.5} Manual Samplers	PM _{2.5} Continuous Analyzers	PM _{2.5} Continuous Analyzers	PM _{2.5} Continuous Analyzers
Required	Required=	Active	Needed
from Table D-5	½ Minimum Number of Required		
	PM _{2.5} Manual Samplers Round Up		
(#)	(#)	(#)	(#)
3	2 - (1/) 2	5	0
3	$3 \times (\frac{1}{2}) = 2$	3	0
	1		

⁴⁷ (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.7 "Fine Particulate Matter (PM_{2.5}) Design Criteria", subsection 4.7.2, "Requirement for Continuous PM_{2.5} Monitoring"

Section 8.3.2 PM_{2.5} Continuous Minimum Monitoring Requirements-Collocation with Manual

The District is required to operate a minimum number of PM_{2.5} continuous analyzers collocated with PM_{2.5} manual samplers. Table 8-14 summarizes these requirements.

4.7.2 Fine Particulate Matter ($PM_{2.5}$) Design Criteria. Requirement for Continuous $PM_{2.5}$ Monitoring ⁴⁸ At least one required continuous analyzer in each MSA must be collocated with one of the required FRM/FEM/ARM monitors

Table 8-14 PM_{2.5} Continuous Minimum Monitoring Requirements-Collocation with Manual

Minimum Number of	Minimum Number of	Minimum Number of	Collocation
PM _{2.5} Continuous Analyzers	PM _{2.5} Continuous Analyzers	PM _{2.5} Continuous Analyzers	Locations
Required to be	Actively	Needed to be	
Collocated with	Collocated with	Collocated with	
PM _{2.5} Manual Samplers	PM _{2.5} Manual Samplers	PM _{2.5} Manual Samplers	
(#)	(#)	(#)	(name)
			Lexington
1	1	0	Elementary School
1	1		(LES)
			06-073-1022

Section 8.3.3 PM_{2.5} Continuous Minimum Monitoring Requirements-NCore

The District is required to operate a $PM_{2.5}$ continuous sampler as part of the NCore multipollutant monitoring program. Table 8-15 lists the NCore $PM_{2.5}$ continuous requirements.

3. Design Criteria for NCore Sites⁴⁹

(b) The NCore sites must measure, at a minimum, PM_{2.5} particle mass using continuous

Table 8-15 PM_{2.5} Continuous Minimum Monitoring Requirements-NCore

able of 10 11/12/2 Continuous Minimum Monitoring Reductioners 17 Core									
Number of	Number of	Number of	NCore						
PM _{2.5} Continuous Analyzers	PM _{2.5} Continuous Analyzers	PM _{2.5} Continuous Analyzers	Location						
Required at NCore Sites	Active at NCore Sites	Needed at NCore Sites							
(#)	(#)	(#)	(name)						
			Lexington						
1	1	0	Elementary School						
1	1	V	(LES)						
			06-073-1022						

 ^{48 (2021) 40} CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.7 "Fine Particulate Matter (PM_{2.5}) Design Criteria", subsection 4.7.2, "Requirement for Continuous PM_{2.5} Monitoring"
 49 (2021) 40 CFR Part 58, App. D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 3, "Design Criteria for NCore sites", subpart (b)

Section 8.3.4 PM_{2.5} Continuous Minimum Monitoring Requirements-Collocation

For quality assurance purposes, there are requirements for analyzers or samplers of the same make and model to be collocated. Table 8-16 summarize these requirements.

3.2.3.2(b) Collocated Quality Control Sampling Procedures for PM 2.5... monitors selected for collocation must also meet the following requirements:⁵⁰

... Table A-2 of this appendix demonstrates the collocation procedure with a PQAO having one type of primary FRM and multiple primary FEMs.

Table A-2

#Primary FEMS of a unique method designation	#Collocated	#Collocated with an FRM	#Collocated with same method designation		
1-9	1	1	0		
10-16	2	1	1		

Section 8.3.4.1 PM_{2.5} Continuous Minimum Monitoring Requirements- Collocation with Manual See Section 8.3.2

<u>Section 8.3.4.2 PM_{2.5} Continuous Minimum Monitoring Requirements- QA Collocation with</u> Continuous

Years prior to 2022, the District did not operate any PM_{2.5} continuous analyzer (BAM 1020) in FEM mode (BAM 1020 analyzers operated as non-FEM). None of these were designated as a primary analyzer. The non-FEM could not be used for comparison to the NAAQS. Starting in late 2022, the District replaced non-FEM continuous analyzers with FEM continuous analyzers (Teledyne T640x). The District plans to deploy these FEM continuous analyzers throughout the Ambient Monitoring Network in 2023. Table 8-16 summarizes the requirement for continuous samplers designated as FEM.

Table 8-16 PM_{2.5} Continuous Minimum Monitoring Requirements-Collocation

Number of	Number of	Number of
PM _{2.5} Continuous Samplers	PM _{2.5} Continuous Samplers	PM _{2.5} Continuous Samplers
Designated as FEM	Required for Collocation	Needed for Collocation
	(from Table A-2)	
(#)	(#)	(#)
5*	0	0
3	O .	V

^{*} Deployed FEM analyzers in late 2022 to replace non-FEM analyzers. Collocated samplers to be at the KVR site.

Section 8.3.5 PM_{2.5} Continuous Minimum Monitoring Requirements-Summary

Table 8-17 summarizes all the PM_{2.5} continuous monitoring requirements from Sections 8.3.1 to 8.3.4.

Table 8-17 PM_{2.5} Continuous Minimum Monitoring Requirements-Summary

CFR Programs	Number of	Number of	Number of
PM _{2.5} Continuous	PM _{2.5} Continuous	PM _{2.5} Continuous	PM _{2.5} Continuous
Requirements	Required	Active	Needed
(name)	(#)	(#)	(#)
Minimum number required=	2	5	0
Minimum number of continuous collocated w/ manual=	1	1	0
NCore=	1	1	0
QA collocation PM _{2.5} continuous with PM _{2.5} continuous	0	0	0

^{50 (2021) 40} CFR Part 58, App. A, Section 3.2.3, "Collocated Quality Control Sampling Procedures for PM2.5", Subsection 3.2.3.2(b)

Section 8.4 PM_{2.5} Speciation Minimum Monitoring Requirements

The State is federally mandated to monitor PM_{2.5} speciation in accordance with the CFR. This section will state the needs for PM_{2.5} speciation method instruments.

The District meets or exceeds all minimum requirements for PM_{2.5} State Regional monitoring.

Section 8.4.1 PM_{2.5} Speciation Minimum Monitoring Requirements-Ambient

One of the requirements is for the STN & CSN network to maintain the current speciation network as designed by the governing authorities. Table 8-18 lists these requirements.

4.7.4 PM _{2.5} Chemical Speciation Site Requirements. ⁵¹

Each State shall continue to conduct chemical speciation monitoring and analyses at sites designated to be part of the PM $_{2.5}$ Speciation Trends Network

Table 8-18 PM_{2.5} Speciation Minimum Monitoring Requirements-Ambient

		mitoring requirements i	
Established	Established	Are the	Number of
PM _{2.5} CSN	PM _{2.5} STN	PM _{2.5} CSN & STN Monitor	PM _{2.5} CSN & STN
Samplers (Sites)	Samplers (Sites)	(Sites)	Monitor (Sites)
		Active?	Needed?
(#)	(#)	(yes/no)	(#)
Lexington	Lexington		
Elementary School	Elementary School	Yes	0
(LES)	(LES)	i es	U
06-073-1022	06-073-1022		
Escondido	Escondido		
(ESC)	(ESC)	No	1*
06-073-1002	06-073-1002		

^{*}Escondido is temporarily closed for remodeling. Once the construction is completed, sampling will resume.

Section 8.4.2 PM_{2.5} Speciation Minimum Monitoring Requirements-NCore

The District is required to operate PM_{2.5} speciation samplers as part of the NCore multipollutant monitoring program. Table 8-19 lists these requirements.

3.(b) Design Criteria for NCore Sites⁵²

The NCore sites must measure, at a minimum... speciated $PM_{2.5...}$

Table 8-19 PM2 5 Speciation Minimum Monitoring Requirements-NCore

-	ubic 0 17 1 1/12.5 5pc	ciacion ivilinimani ivio	mitoring requirements	10010
	Number of	Location of	Are the	Number of
	NCore Site(s)	NCore Site(s)	Monitors (Sites)	Monitors (Sites)
			Active	Needed
	(#)	(name)	(yes/no)	(#)
	1	Lexington Elementary School (LES) 06-073-1022	Yes	0

⁵¹ (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.7 "Fine Particulate Matter (PM_{2.5}) Design Criteria", subsection 4.7.4.

⁵² (2021) 40 CFR Part 58, App D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 3, "Design Criteria for NCore Sites", subsection (b).

Section 8.4.3 PM_{2.5} Speciation Minimum Monitoring Requirements-Summary

Table 8-20 summarizes all the PM_{2.5} speciation minimum monitoring requirements.

Table 8-20 PM_{2.5} Speciation Minimum Monitoring Requirements-Summary

	0 1	<u> </u>	
CFR Programs	Number of	Number of	Number of
PM _{2.5} Other	PM _{2.5} Speciation	PM _{2.5} Speciation	PM _{2.5} Speciation
Requirements	Required	Active	Needed
(name)	(#)	(#)	(#)
PM _{2.5} STN and CSN Speciation=	2	1	1*
NCore=	1	1	0

^{*}Escondido is temporarily closed for remodeling. Once the construction is completed, sampling will resume.

Section 8.5 PM_{2.5} Suitability for Comparison to the NAAQS

The CFR requires that certain operating and siting parameters be met for an instrument to be suitable to be compared to the NAAQS. Some PM_{2.5} instrumentation are not compared to the NAAQS. This includes PM_{2.5} speciation samplers, and PM_{2.5} analyzers not operating in regulatory mode (non-FEM BAM PM_{2.5} continuous samplers). All District PM_{2.5} samplers are sited to specified CFR parameters to collect valid data. This section will list those requirements.

Section 8.5.1 PM_{2.5} Manual Suitability for Comparison to the NAAQS

The CFR requires that for PM_{2.5} Manual data to be used in regulatory determinations of compliance with the PM_{2.5} NAAQS, the PM_{2.5} samplers must be sited according to Federal Regulations⁵³ and the sampling frequency must be in accordance with Federal Regulations.⁵⁴ All District PM_{2.5} Manual samplers meet or exceed all minimum monitoring requirements and sampling frequencies, as to be able to be compared to the NAAQS. Table 8-21 summarizes these requirements.

Table 8-21 PM_{2.5} Manual Suitability for Comparison to the NAAOS – Sampling Equipment

Parameter		Code	Unit	Code	Duration	Code	Equipment	Method	Code	Frequency	Method ID
Particulate Matter ≤ 2.5 μm (manual)	PM _{2.5}	88101	μg/m ³ LC STD	105 001	24-Hr	7	Met One E-SEQ-FRM PM2.5 Air Sampler w/VSCC	Gravimetric	545	1:3	RFPS-0717-245

Section 8.5.2 PM_{2.5} Continuous Unsuitability for Comparison to the NAAOS

The CFR requires that for PM_{2.5} FEM data to be used in regulatory determinations of compliance with the PM_{2.5} NAAQS, the PM_{2.5} FEM samplers must operate according to FEM designation requirements. In 2014, the District received approval from the EPA Region IX authorities to operate the PM_{2.5} Continuous samplers (BAM 1020) in non-FEM mode. The District operated the PM_{2.5} continuous samplers (BAM 1020) at 36% relative humidity, per the manufacturer's recommendation. Therefore, the PM_{2.5} BAM 1020 continuous samplers cannot be compared to the NAAQS. In late 2022, the District replaced the non-FEM samplers (BAM 1020) to FEM (T640x). The PM_{2.5} continuous samplers are an important tool to define and develop abatement strategies to curtail PM_{2.5} pollution. The PM_{2.5} continuous samplers are used for trends analysis and real-time reporting for public information. Table 8-22 summarizes the equipment requirements.

⁵⁴ (2021) 40 CFR Part 58, Subpart B, Section 58.12, "Operating Schedules"

⁵³ (2021) 40 CFR Part 58, Appendix E, "Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring" and Table E-4.

Table 8-22 PM_{2.5} Continuous Unsuitability for Comparison to the NAAQS – Sampling Equipment

Parameter		Code	Unit	Code	Duration	Code	Equipment	Method	Code	Frequency	Method ID
Particulate Matter ≤ 2.5 μm (continuous)	PM _{2.5}	88502	μg/m ³ LC	105	1-Hr	1	Met One BAM 1020 w/VSCC	Beta Attenuation	733	7/24	Not Applicable
		88101					Teledyne T640x	Broadband Spec.	238	7/24	EQPM-0516-238

Section 8.5.3 PM_{2.5} Speciation Unsuitability for Comparison to the NAAOS

There are no NAAQS for the PM_{2.5} Speciation program. Table 8-23 summarizes the equipment requirements.

Table 8-23 PM_{2.5} Speciation Unsuitability for Comparison to the NAAQS – Sampling Equipment

[Parameter	Code	Unit	Code	Duration	Code	Equipment	Method	Code	Frequency	Method ID
	Particulate Matter ≤ PM 2.5 μm (speciated) CS		See EPA	See EPA	24-Hr	7	URG-3000N	See EPA	See EPA	1:3 or 1:6	Not Applicable
	Particulate Matter ≤ PM 2.5 µm (speciated) ST		See EPA	See EPA	24-Hr	7	Met One SuperSASS	See EPA	See EPA	1:3 or 1:6	Not Applicable

Section 8.6 PM_{2.5} Manual Operating Schedule

PM_{2.5} Manual samplers must operate on a specified frequency based upon several factors, e.g. maximum concentration, percentage to the NAAQS, etc. This section will list those requirements. Table 8-24 to Table 8-27 summarize these requirements.

58.12(d)(1)(i) Operating schedules for manual $PM_{2.5}$ samplers 55 Manual $PM_{2.5}$ samplers at required SLAMS stations without a collocated continuously operating $PM_{2.5}$ monitor must operate on at least a 1-in-3 day schedule unless a waiver for an alternative schedule has been approved per paragraph (d)(1)(ii) of this section.

- (ii) For SLAMS $PM_{2.5}$ sites with both manual and continuous $PM_{2.5}$ monitors operating, the monitoring agency may request approval for a reduction to 1-in-6 day $PM_{2.5}$ sampling or for seasonal sampling from the EPA Regional Administrator.
- (iii) Required SLAMS stations whose measurements determine the 24-hour design value for their area and whose data are within ± 5 percent of the level of the 24-hour $PM_{2.5}$ NAAQS must have an FRM or FEM operate on a daily schedule if that area's design value for the annual NAAQS is less than the level of the annual $PM_{2.5}$ standard. A continuously operating FEM or ARM $PM_{2.5}$ monitor satisfies this requirement unless it is identified in the monitoring agency's annual monitoring network plan as not appropriate for comparison to the NAAQS and the EPA Regional Administrator has approved that the data from that monitor may be excluded from comparison to the NAAQS. The daily schedule must be maintained until the referenced design value no longer meets these criteria for 3 consecutive years.
- (2) Manual $PM_{2.5}$ samplers at NCore stations and required regional background and regional transport sites must operate on at least a 1-in-3 day sampling frequency.
- (3) Manual $PM_{2.5}$ speciation samplers at STN stations must operate on at least a 1-in-3 day sampling frequency ...

^{55 (2021) 40} CFR Part 58, Section 58.12, Subpart B, "Operating Schedules", (d) For manual PM_{2.5} samplers (1)(i) to (3)

Table 8-24 PM_{2.5} Operating Schedule-for All PM_{2.5} Instruments

	Camp Pendleton	Rancho Carmel Dr.	Alpine	Lexington Elementary School (NCore, PAMS, DV 24-hr)	Kearny Villa Rd.	Donovan	Chula Vista	Sherman Elementary School
PM _{2.5} -manual FRM		1:3		1:1	1:3		1:3	1:3
PM _{2.5} -continuous non-FEM	7/24		7/24	7/24		7/24		7/24
PM _{2.5} -continuous FEM*	7/24		7/24	7/24		7/24		7/24
PM _{2.5} -speciation				1:3				

Note: Historically, the DV alternates between three FRM locations (Downtown, Escondido, and El Cajon). While the Downtown site at Sherman Elementary School began operating, there is not enough data for the DV and the Escondido site is still temporarily inoperable, due to relocation; therefore, El Cajon (Lexington Elementary School) is the DV location. Once the new sites have been operational for 3 continuous calendar years (for DV calculations purposes) this DV location designation will be re-evaluated in the subsequent Annual Network Report. *Teledyne T640x FEM analyzers replaced BAM non-FEM in 2022. Installation dates: ALP (9/8/2022), CMP (8/30/2022), LES (8/11/2022), DVN (8/2/2022), SES (5/16/2022).

Table 8-25 PM_{2.5} Manual Operating Schedule-for Manual Samplers Collocated with Continuous

Samplers (DV-24-hr)

Samplers (DV-2	· · · · · · · · · · · · · · · · · · ·						
Is the	Location of	Calculat	ions	Any	What is	What is	Does
24-hr DV	24-hr DV	24-hr DV		24-Hr DV	the	the	the
PM _{2.5} Manual	PM _{2.5} Manual			NAAQS	Required	Actual	Actual
sampler	sampler			Exceedances	Sampling	Sampling	Sampling
Collocated	Collocated			over the	Frequency?	Frequency?	Frequency
with	with			Last 3-years			Meet EPA
PM _{2.5} Continuous	PM _{2.5} Continuous						Specifications
Samplers?	Samplers						
(yes/no)	(name)	(years)	$(\mu g/m^3)$	(yes/no)	(#)	(#)	(yes/no)
		2020-2022	23	NO			
	Lexington	2019-2021	23	NO			
	Elementary School	2018-2020	22	NO	1 1	1 1	
yes	(LES)	2017-2019	19	NO	1:1	1:1	yes
	06-073-1022	2016-2018	19	NO			
		2015-2017	18	NO			

Table 8-26 PM_{2.5} Manual Operating Schedule-NCore

Is there a	Location of	What is the	What is the	Does the
NCore	NCore	Minimum	Actual	Actual
PM _{2.5} Manual	PM _{2.5} Manual	EPA	Sampling	Sampling
Sampler?	Sampler	Sampling	Frequency?	Frequency
		Frequency?		Meet EPA
				Specifications?
(yes)	(name)	(#)	(#)	(yes/no)
yes	Lexington Elementary School (LES) 06-073-1022	1:3	1:1	yes

Table 8-27 PM_{2.5} Speciation Operating Schedule-NCore

Is there a	Location of	What is the	What is the	Does the
NCore	NCore	Minimum	Actual	Actual
PM _{2.5} Speciation	PM _{2.5} Speciation	EPA	Sampling	Sampling
Sampler?	Sampler	Sampling	Frequency?	Frequency
		Frequency?		Meet EPA
				Specifications?
(yes)	(name)	(#)	(#)	(yes/no)
	Lexington			
Vec	Elementary School	1:3	1:3	Vec
yes	(LES)	1.3	1.3	yes
	06-073-1022			

Section 8.7 PM_{2.5} Manual Concentrations for San Diego

As with the State, PM_{2.5} concentrations in the San Diego Air Basin have declined over the years. This section will illustrate the different metrics for comparison.

Section 8.7.1 PM_{2.5} Manual Concentrations for San Diego-for the Last 20 Years

Annual average PM_{2.5} FRM concentrations in the County have declined over the years, see Table 8-28. The 98th percentile of 24-Hr PM_{2.5} concentrations showed substantial variability within this period, a reflection of changes in meteorology and the influence of the 2003 and 2007 wildfires. Furthermore, the standard was lowered in 2007, which corresponded to increased incidents of "Days above the Standard". Note: the "Days Above the Standard" row in Table 8-28 reflects the PM_{2.5} standard for that year. Figure 8.2 graphs the SDAB PM_{2.5} concentrations over the years.

Table 8-28 PM_{2.5} Manual Concentrations for San Diego-for the Last 20 Years (24-Hr), 2002-2022

Maximum 24-Hr	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Concentration (µg/m³)	53.6	239.2	67.3	44.1	63.3	126.2	42.0	65.0	33.3	34.7	70.7	56.3	36.7	33.5	34.4	42.7	41.9	23.8	51.9	30.2	26.4
Days above the National Std	0	2	1	0	1	17	3	3	0	0	2	2	1	0	0	1	1	0	3	0	0

n/a= not applicable

^{*}Wildfires in San Diego County

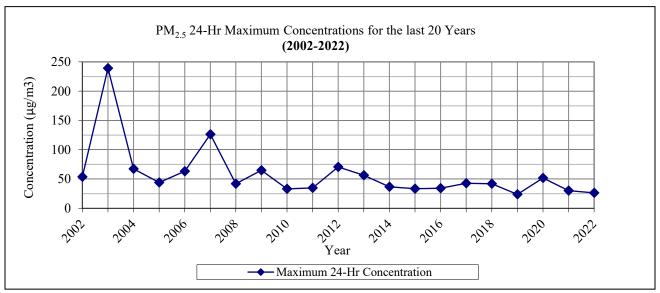


Figure 8.2 PM2.5 Manual Concentrations for San Diego-for the Last 20 Years (24-Hr) Graph

Section 8.7.2 PM_{2.5} Manual Concentrations for San Diego-by Site for the Year

Table 8-29 lists the maximum PM_{2.5} Manual measurements for each PM_{2.5} Manual method monitoring location and Figure 8.3 shows the values graphically with respect to the National Standard.

FOR INFORMATIONAL PURPOSES ONLY.

NAAQS is for DV calculations. Annual values are not comparable to the NAAQS.

Table 8-29 PM_{2.5} Manual Concentrations for San Diego-by Site for the Year (24-Hr & Annual

Average), 2022

	No	Site	Site Abbreviation	Maximum 24-Hr Concentration	Annual Average	Number of Days Above the National Standard
Method	(#)	(name)		$(\mu g/m^3)$	$(\mu g/m^3)$	(#)
/let]	1	Rancho Carmel Dr.	RCD	14.9	7.69	0
al N	2	Kearny Villa Rd.	KVR	13.9	6.76	0
Manual	3	Lexington Elementary School	LES	26.4	8.97	0
	4	Sherman Elementary School	SES	18.1	8.63	0
	5	Chula Vista	CVA	16.2	8.44	0

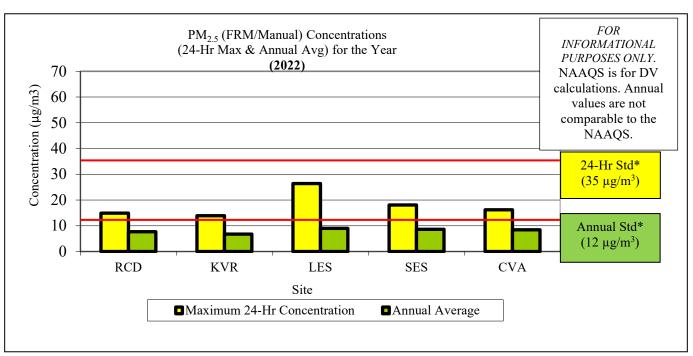


Figure 8.3 PM_{2.5} Manual Concentrations for San Diego-by Site for the Year (24-Hr & Annual Average) Graph

Section 8.7.3 PM_{2.5} Manual Concentrations for San Diego-by Site for the Design Value (24-Hr)

Table 8-30 lists the PM_{2.5} Manual 24-Hr Design Values for each PM_{2.5} Manual method monitoring location and Figure 8.4 shows the concentrations graphically with respect to the National Standard.

Table 8-30 PM_{2.5} Manual Concentrations for San Diego-by Site for the Design Value (24-Hr), 2020-2022

	No	Site	Site	24-Hr Design	Number of	Is the	Is the	Does the
			Abbrev	Value	Days Above	24-Hr	24-Hr	24-Hr
					the	Design Value	Design Value	Design Value
					24-Hr	≥ 85%	< 85%	Meet the
po					NAAQS	of the	of the	NAAQS?
Method						NAAQS?	NAAQS?	
	(#)	(name)		$(\mu g/m^3)$	(#)	(yes/no)	(yes/no)	(yes/no)
Manual	1	Rancho Carmel Dr.	RCD	22	0	no	yes	yes
M_{a}	2	Kearny Villa Rd.	KVR	20	0	no	yes	yes
	3	Lexington Elementary School	LES	23	0	no	yes	yes
	4	Sherman Elementary School	SES	23	0	no	yes	yes
	5	Chula Vista	CVA	23	0	no	yes	yes

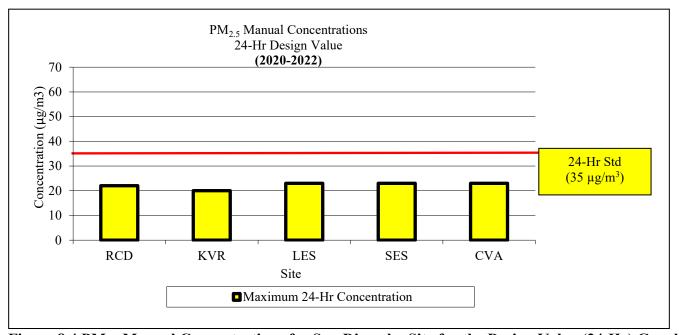


Figure 8.4 PM_{2.5} Manual Concentrations for San Diego-by Site for the Design Value (24-Hr) Graph

Section 8.7.4 PM_{2.5} Manual Concentrations for San Diego-by Site for the Design Value (Annual Average)

Table 8-31 lists the PM_{2.5} Manual annual average Design Values for each PM_{2.5} Manual method monitoring location and Figure 8.5 shows the concentrations graphically with respect to the National Standard.

Table 8-31 PM_{2.5} Manual Concentrations for San Diego-by Site for the Design Value (Annual

Average), 2020-2022

	No	Site	Site	Design Value	Is the	Is the	Does the
			Abbrev	for the	Annual Avg	Annual Avg.	Annual Avg
				Annual Avg	Design Value	Design Value	Design Value
					≥ 85%	< 85%	Meet the
9					of the	of the	NAAQS?
ho					NAAQS?	NAAQS?	
Jet				2020-2022	2022	2022	2022
Manual Method	(#)	(name)		$(\mu g/m^3)$	(yes/no)	(yes/no)	(yes/no)
lanı	1	Rancho Carmel Dr.	RCD	8.5	no	yes	yes
2	2	Kearny Villa Rd.	KVR	7.8	no	yes	yes
	3	Lexington Elementary School	LES	9.6	no	yes	yes
	4	Sherman Elementary School	SES	9.7	no	yes	yes
	5	Chula Vista	CVA	9.5	no	yes	yes

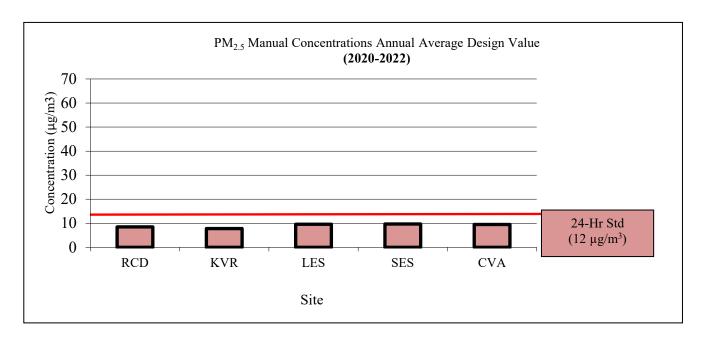


Figure 8.5 PM_{2.5} Manual Concentrations for San Diego-by Site for the Design Value (Annual Average) Graph

Section 8.8 PM_{2.5} Continuous Concentrations for San Diego

In late 2022, the District transitioned from continuous analyzers (BAM 1020) operating as non-Federal Equivalence Method (non-FEM) analyzers to continuous analyzers (T640x) operating as a FEM. The District PM_{2.5} continuous non-FEM samplers <u>cannot</u> be compared to the NAAQS, because they are non-regulatory units; therefore, the values cannot be compared to the PM_{2.5} standards and can only be used for trends analysis and public information. The non-FEM PM_{2.5} continuous samplers were operated at 36% relative humidity (per manufacturer recommendation), which made them operate as non-regulatory. The new FEM continuous PM_{2.5} analyzers will be compared to the NAAQS. The District will transition to all continuous FEM PM_{2.5} samplers throughout the monitoring network in 2023.

<u>Section 8.8.1 PM_{2.5} Continuous Concentrations for San Diego-by Site for the Year (24-Hr & Annual Average)</u>

Table 8-32 lists the maximum PM_{2.5} continuous 24-Hr measurements and Annual Average for each PM_{2.5} continuous monitoring location and Figure 8.6 shows the concentrations graphically. The measurements are not the Design Value (Yearly only).

Note: FOR INFORMATIONAL PURPOSES ONLY. Not a full year of FEM data.

Table 8-32 PM_{2.5} Continuous Concentrations for San Diego-by Site for the Year (24-Hr & Annual Average), 2022

S	No.	Site	Site Abbreviation	Maximum 24-Hr Concentration	Annual Average
Continuous Method	(#)	(name)		$(\mu g/m^3)$	$(\mu g/m^3)$
IS M	1	Camp Pendleton	CMP	18.0	8.4
non	2	Alpine	ALP	18.7	6.3
Contin	3	Lexington Elementary School	LES	27.3	10.3
)	4	Sherman Elementary School	SES	20.8	10.3
	5	Donovan	DVN	30.7	12.4

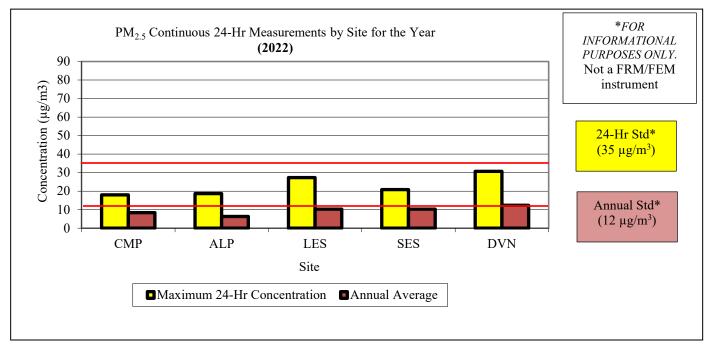


Figure 8.6 PM_{2.5} Continuous Yearly 24-Hr & Annual Average Measurements by Site Graph

<u>Section 8.8.2 PM_{2.5} Continuous Concentrations for San Diego-by Site for the Design Value (24-Hr & Annual Average)</u>

Table 8-33 lists the PM_{2.5} continuous 24-Hr Design Values and Annual Average Design Values for each PM_{2.5} continuous monitoring location and **Figure 8.7** shows the values graphically.

Note: FOR INFORMATIONAL PURPOSES ONLY. Not an FRM/FEM instrument.

Table 8-33 PM_{2.5} Continuous Concentrations for San Diego-by Site for the Design Value (24-Hr & Annual Average), 2020-2022

poq	No.	Site	Site Abbreviation	24-Hr Design Value	Design Value Annual Average
Met]	(#)	(name)		$(\mu g/m^3)$	$(\mu g/m^3)$
sno	1	Camp Pendleton	CMP	22.5	8.8
nu	2	Alpine	ALP	15.3	6.2
Continuous Method	3	Lexington Elementary School	LES	22.8	10.7
	4	Sherman Elementary School	SES	24.0	10.2
	5	Donovan	DVN	32.6	12.9

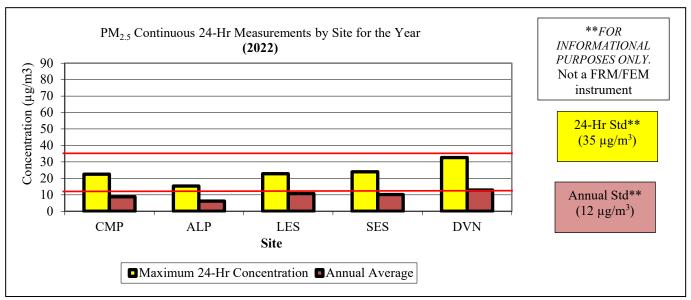


Figure 8.7 PM_{2.5} Continuous Concentrations for San Diego-by Site for the Design Value (24-Hr & Annual Average) Graph

Chapter 9: Particulate Matter 10 µm (PM₁₀)

Section 9.1 PM₁₀ Introduction

PM₁₀ was sampled at locations throughout the SDAB (Figure 9.1) and referenced to the PM₁₀ standards of the year (Table 9-1). The equipment is listed in **Table 9-2**. A PM₁₀ (Lo-Vol) sampler at the Lexington Elementary School (LES) location is part of the paired Lo-Vol samplers needed to calculate PMcoarse. Please Note:

- In 2015, the District was evicted from the Escondido site. The District is seeking an alternative location (TBD) for the air monitoring station in Escondido.
- In 2019, the District recorded a maximum PM₁₀ concentration of 199 μg/m³. This triggered a requirement for 6 to 10 monitors. The District deployed continuous particulate matter (PM_{2.5} & PM₁₀) analyzers (T640x) at Lexington Elementary School, Donovan, Camp Pendleton, Sherman Elementary School, and Alpine in late 2022 to meet this requirement. New sites added to the PM₁₀ network are labeled in white on the map below (Fig 9.1). The District will deploy additional particulate matter (PM_{2.5} & PM₁₀) analyzers throughout the monitoring network in 2023.

Figure 9.1 PM₁₀ Overall Map

Table 9-1 PM₁₀ State and National Standards for the Year

	Ambient Air Quality Standards									
Pollutant	Averaging	California Standards	National S	tandards						
	Time	Concentration	Primary	Secondary						
Fine	24 hour	$50 \mu g/m^3$	$150 \ \mu g/m^3$	$150 \mu g/m^3$						
Particulate Matter (PM ₁₀)	Annual Arithmetic Mean	20 μg/m ³	Not Applicable	Not Applicable						

Table 9-2 PM₁₀ Sampling Network

	Abbreviation	ALP	CMP	CVA		DVN		LES	3	SES
	Name	Alpine	Camp Pendleton	Chula Vista		Donovan		Lexington Eleme	Sherman Elementary School	
	AQS ID	06-073-1006	06-073-1008	06-073-0001		06-073-1014		60-076-	1022	06-073-1026
	Monitor Type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
	Monitor Designation	PRI	PRI	PRI	PRI	QAC	PRI	PRI	PRI	PRI
	Method	BS	BS	SQ	SQ	SQ	BS	SQ	BS	BS
	Affiliation	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	Not Applicable	NCore	Not Applicable	Not Applicable
.01	Spatial Scale	NS	NS	NS	NS	NS	NS	NS	NS	NS
PM10	Site Type	PE	PE	PE	НС	PE	PE	PE	PE	PE
	Objective (Federal)	NAAQS	NAAQS	NAAQS	NAAQS	NAAQS	NAAQS	NAAQS	NAAQS	NAAQS
	Frequency	7/24	7/24	1:6	1:6	1:6	7/24	1:6	7/24	7/24
	Equipment	Teledyne T640x*	Teledyne T640x*	Met One E-SEQ-FRM w/o VSCC	Met One E-SEQ-FRM w/o VSCC	Met One E-SEQ-FRM w/o VSCC	Teledyne T640x*	Met One E-SEQ-FRM w/o VSCC	Teledyne T640x*	Teledyne T640x*

^{*}Teledyne T640x installation dates: ALP (9/8/2022), CMP (8/30/2022), LES (8/11/2022), DVN (8/2/2022), SES (5/16/2022).

Glossary of Terms

Monitor Type

E=EPA

O= Other

SLAMS= State & Local monitoring station

SPM= Special purpose monitor

CATAC= California Toxics Monitoring

Site Type

HC= Highest concentration PE= Population exposure

SO= Source oriented

UPBD= Upwind background

G/B= General/Background

RT= Regional Transport

WRI= Welfare related impacts

QA= Quality assurance

Method (Sampling/Analysis)

CL= Chemiluminescence

CT= Low Volume, size selective inlet, continuous

FL= Fluorescence

HV= High volume

IR= Nondispersive infrared

SI= High volume, size selective inlet

SP= Low volume, size selective inlet, speciated

SQ= Low volume, size selective inlet, sequential

UV= Ultraviolet absorption

Canister= Evacuated stainless steel canisters

Cartridges= Di-nitrophenylhydrazine cartridges

FSL= Fused Silica Lined

Filter= Quartz filters

Auto= GCFID continuous

BS= Broadband Spectroscopy

Monitor Designation

PRI= Primary

QAC=Collocated

Network Affiliation

BG= Border Grant

CSN STN= Trends Speciation

CSN SU= Supplemental Speciation

NATTS= National Air Toxics Trends Stations

NCORE= National Core Multi-pollutants

NR= Near-road

PAMS= Photochemical Assessment Monitoring

Spatial Scale

MI= Micro

MS= Middle

NS= Neighborhood

Objective (Federal)

NAAQS= Suitable for NAAQS comparison

Research= Research support

PI= Public Information

N/A= Not Applicable

O= Other

Section 9.2 PM₁₀ Minimum Monitoring Requirements

The District is federally mandated to monitor PM_{10} levels in accordance with the CFR. This section will state the different monitoring requirements for each program, e.g. ambient, NCore, etc. that the District operates and references therein (Note: only the passages applicable/informative to the District are referenced). These monitors can serve as fulfilling other PM_{10} network requirements, e.g. ambient PM_{10} sampler can fulfill an NCore PM_{10} sampler requirement.

The District meets or exceeds all minimum requirements for PM₁₀ monitoring for all programs.

Section 9.2.1 PM₁₀ Minimum Monitoring Requirements-Ambient

All Districts are required to operate a minimum number of PM_{10} samplers irrespective of the PM_{10} network affiliation. These monitors can serve as fulfilling other PM_{10} network requirements. To ascertain the minimum number of samplers required, the Maximum Concentration value must be calculated and is summarized in Table 9-3 to Table 9-4.

4.6(a) Particulate Matter (PM $_{10}$) Design Criteria. ⁵⁶ Table D-4 indicates the approximate number of permanent stations required in MSAs to characterize national and regional PM $_{10}$ air quality trends and geographical patterns...

Table D-4 of Appendix D to Part 58—PM 10 Minimum Monitoring Requirements

(Approximate Number of Stations per MSA)

Population	High Concentration	Medium Concentration	Low Concentration
Category	(120% of NAAQS ²	(>80% of NAAQS)	(<80% of NAAQS)
>1,000,000	6-10	4-8	2-4

Table 9-3 PM₁₀ Minimum Monitoring Requirement-Design Criteria for the Year, 2022 (24-Hr)

24-hr	24-hr	High Concentration	Medium Concentration	Low Concentration	Does the
Maximum	Maximum	Is the	Is the	Is the	24-hr
Concentration	Concentration	24-hr	24-hr	24-hr	Maximum
2022	Location	Maximum	Maximum	Maximum	Concentration
		Concentration	Concentration	Concentration	Meet the
		\geq 120% of the	> 80% of the	< 80% of the	NAAQS?
		NAAQS?	NAAQS?	NAAQS?	
$(\mu g/m^3)$	(name)	(yes/no)	(yes/no)	(yes/no)	(yes/no)
243	DVN	yes	yes	no	no

Table 9-4 PM₁₀ Minimum Monitoring Requirements-Ambient

	able 7-4 1 Will William Womtoring Requirements-Ambient											
MSA	Population	Number of	Number of	Number of	Number							
&	Estimated from	PM ₁₀ Samplers	PM ₁₀ Sequential	PM_{10}	of							
County	2020 Census ⁵⁷	Required	Samplers	Continuous	PM_{10}							
			Active	Samplers	Samplers							
				Deployed	Needed							
(name)	(#)	(#)	(#)	(#)	(#)							
San Diego	3.3 million	6 - 10	4	6	0							

⁵⁶ (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 4, "Pollutant-Specific Design Criteria for SLAMS Sites", part 4.6 "Particulate Matter (PM₁₀) Design Criteria" and Table D-4

⁵⁷ Based on the most recent official U.S Census statistics.

Section 9.2.2 PM₁₀ Minimum Monitoring Requirements-NCore

The District is required to operate a PM_{10} sampler as part of the NCore multipollutant monitoring program for the calculation of $PM_{10-2.5}$ data. Table 9-5 lists the NCore PM_{10} requirements.

3(b) Design Criteria for NCore Sites⁵⁸

The NCore sites must measure, at a minimum, PM_{25} particle mass using continuous and integrated/filter-based samplers, speciated PM_{25} , PM_{1025} particle mass...

Table 9-5 PM₁₀ Minimum Monitoring Requirements-NCore

Number of	Number of	Number of	Name of
PM ₁₀ Samplers	PM ₁₀ Samplers	PM ₁₀ Samplers	NCore Site
Required for	Active at	Needed at	
NCore Sites*	NCore Sites	NCore Sites	
(#)	(#)	(#)	(name)
			Lexington
1	1	0	Elementary School
1	1	U	(LES)
			06-073-1022

^{*}While the PM₁₀ sampler is not specifically needed to fulfill NCore requirement, it is needed for PM_{10-2.5} (PMcoarse) measurements.

Section 9.2.3 PM₁₀ Manual Minimum Monitoring Requirements-QA Collocation

Collocation guidance is from the CFR. Table 9-6 summarizes these requirements.

3.3.4 Collocated Quality Control Sampling Procedures for Manual PM_{10}^{59}

...For manual PM_{10} samplers, a PQAO must:(a) Have 15 percent of the primary monitors collocated (values of 0.5 and greater round up)... (b) If an organization has no sites with daily concentrations within plus or minus 20 percent of the NAAQS...(e)

Table 9-6 PM₁₀ Manual Minimum Monitoring Requirements-Collocation

Number of	Location of				
PM ₁₀ Samplers	Collocated				
Required	Active	Required for	Active for	Active for Needed for	
		Collocation	Collocation	Collocation	
(II)	(II)	(II)	(II)	(II)	()
(#)	(#)	(#)	(#)	(#)	(name)
					D
					Donovan
2 - 4	4	4 x (15%) = 1	1	0	Donovan (DVN)

Section 9.2.4 PM₁₀ Minimum Monitoring Requirements-Summary

Table 9-7 summarizes all the PM₁₀ minimum monitoring requirements from Sections 9.2.1 to 9.2.3.

^{58 (2021) 40} CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Sec. 3, "Design Criteria for NCore sites", subpart (b)

⁵⁹ (2021) 40 CFR Part 58, Appendix A, Section 3.3.4, "Collocated Quality Control Sampling Procedures for Manual PM₁₀", subsection 3.3.4.1 (a)-(e)

Table 9-7 PM₁₀ Minimum Monitoring Requirements-Summary

CFR Programs	Number of	Number of	Number of
PM ₁₀ Samplers	PM ₁₀ Samplers	PM ₁₀ Samplers	PM ₁₀ Samplers
Requirements	Required	Active	Needed
(name)	(#)	(#)	(#)
CFR EPA Table D-2 only=	6-10	6*	0
NCore=	1	1	0
QA collocation	1	1	0

^{*} Continuous PM₁₀ samplers (T640x) deployed in late 2022. Number of PM₁₀ samplers now meet the requirement.

Section 9.3 PM₁₀ Suitability for Comparison to the NAAQS

Many different criteria are required for PM_{10} data to be considered to be suitable for comparison to the NAAQS, e.g. siting, sampling frequency, etc. This section will state those criteria.

Section 9.3.1 PM₁₀ Suitability for Comparison to the NAAQS - Equipment & Siting

The CFR requires that for PM₁₀ data to be used in regulatory determinations of compliance with the PM₁₀ NAAQS, the PM₁₀ monitors must be sited according to Federal Regulations⁶⁰. All District PM₁₀ samplers meet or exceed all minimum monitoring requirements and can be compared to the NAAQS. Table 9-8 summarizes them.

Table 9-8 PM₁₀ Suitability for Comparison to the NAAQS, Equipment & Siting

_	•	tole > 0 I mil o our		J	0 0			<u>C</u>	e, Equipment	<u> </u>			
		Parameter		Code	Unit	Code	Duration	Code	Equipment	Method	Code	Frequency	Method ID
	Amb	Particulate Matter ≤ 10 μm (Lo-Vol)	PM ₁₀	81102	μg/m ³ STD	001	24-Hr	7	Met One E-SEQ-FRM Sampler w/o VSCC	Gravimetric	246	1:6	RFPS-0717-246
	NCore	Particulate Matter ≤ 10 μm (Lo-Vol)	PM_{10}	85101 81102	μg/m ³ LC STD	105 001	24-Hr	7	Met One E-SEQ-FRM Sampler w/o VSCC	Gravimetric	246 246	1:3	RFPS-0717-246
	Amb	Particulate Matter ≤ 10 μm	PM ₁₀	81102	μg/m ³ STD	001	1-Hr	1	Teledyne T640x*	Broadband Spec.	239	7/24	EQPM-0516- 239
	NCore	Particulate Matter ≤ 10 μm	PM ₁₀	85101 81102	μg/m ³ LC STD	105 001	1-Hr	1	Teledyne T640x*	Broadband Spec	239	7/24	EQPM-0516- 239

^{*}Teledyne T640x installation dates: ALP (9/8/2022), CMP (8/30/2022), LES (8/11/2022), DVN (8/2/2022), SES (5/16/2022).

Section 9.3.2 PM₁₀ Suitability for Comparison to the NAAQS - Sampling Frequency

The CFR requires that for PM_{10} data to be used in regulatory determinations of compliance with the PM_{10} NAAQS, the PM_{10} monitors' sampling frequency must be in accordance with Federal regulations⁶¹ All District PM_{10} samplers meet or exceed all minimum monitoring requirements for the sampling frequency and can be compared to the NAAQS. Table 9-9 summarizes these requirements.

58.12(e) Operating schedules

For PM_{10} samplers, a 24-hour sample must be taken from midnight to midnight (local standard time) to ensure national consistency. The minimum monitoring schedule for the site in the area of expected maximum concentration shall be based on the relative level of that monitoring site concentration with respect to the 24-hour standard as illustrated in Figure 1 below.... The minimum sampling schedule for all other sites in the area remains once every six days.

⁶¹ (2021) 40 CFR Part 58, Subpart B, Section 58.12, "Operating Schedules."

^{60 (2021) 40} CFR Part 58, Appendix E, "Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring" and Table E-4.

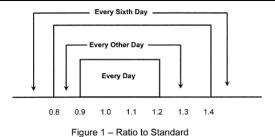


Table 9-9 PM₁₀ Suitability for Comparison to the NAAQS - Sampling Frequency, 2022

				1 0 1	
Site of	Maximum	Is Site of	What is the	What is the	Does the
Expected	Concentration	Expected	Minimum	Actual	Actual
Maximum	for 24-Hr	Maximum	EPA	Sampling	Sampling
Concentration		Concentration	Permitted	Frequency?	Frequency
for 24-Hr		for 24-Hr < 80%	Sampling		Meet EPA
		to the NAAQS	Frequency?		Specifications?
(name)	$(\mu g/m^3)$	(yes/no)	(#)	(#)	(yes/no)
Donovan					
(DVN)	243	no	1:6	1:6	yes
06-073-1014					

Section 9.4 PM₁₀ Concentrations for San Diego

 PM_{10} concentrations do not correlate well to growth in population or vehicle usage, and high PM_{10} concentrations do not always occur in high population areas. Emissions from stationary sources and motor vehicles form secondary particles that contribute to PM_{10} in many areas. This section will illustrate the different metrics for comparison.

Section 9.4.1 PM₁₀ Concentrations for San Diego-for the Last 20 Years

The three-year average of the annual average shows a large decrease; however, there is a great deal of variability from year-to-year. Much of this variability is due to meteorological conditions rather than changes in emissions. Note: the "Days Above the National 24-Hr Standard" row in Table 9-10 and Figure 9.2 reflect the PM₁₀ standard for that year.

Table 9-10 PM₁₀ Concentrations for San Diego - for the Last 20 Years, 2002-2022

Maximum 24-Hr	2002	* 2003	2004	2005	2006	* 2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Concentration (µg/m³)	130	280	137	155	133	394	158	126	108	125	126	90	29	136	79	66	53	199	174	122	243
Days above the National Standard	0	2	0	2	0	2	1	0	0	0	0	0	0	0	0	0	0	1	2	0	3

conditions.

*Due to the firestorms of 2003 and 2007, the 24-hr value exceeded the National standard for those years. The firestorms are considered as exceptional events, and they do not have a lasting impact in the SDAB. Even with the last two firestorms, the County still qualifies for attainment status.

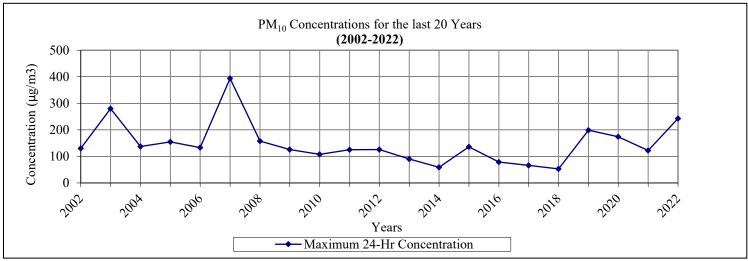


Figure 9.2 PM₁₀ Concentrations for San Diego-for the Last 20 Years Graph Section 9.4.2 PM₁₀ Concentrations for San Diego - by Site at Standard Conditions (STD) for the Year (24-Hr & Annual Average)

Data from the Lexington Elementary School PM_{10} sampler is reported in Local conditions (LC) and Standard Conditions (STD) conditions and PM10 data at Chula Vista and Donovan are reported only in Standard conditions. The Standard concentration is shown in Table 9-11 and Figure 9.3. The PM_{10} samplers are operated in Local Conditions (LC) and must be converted to STD

Table 9-11 PM₁₀ Concentrations for San Diego-by Site at Standard Conditions (STD) for the Year, 2022

No.	Site	Site	Maximum	Annual	Number of Days
		Abbreviation	Concentration	Average	Above the
			for 24-hrs		National Standard
(#)			$(\mu g/m^3)$	$(\mu g/m^3)$	(#)
1	Lexington Elementary School	LES	44	22.0	0
2	Chula Vista	CVA	38	22.9	0
3	Donovan	DVN	243	52.4	3

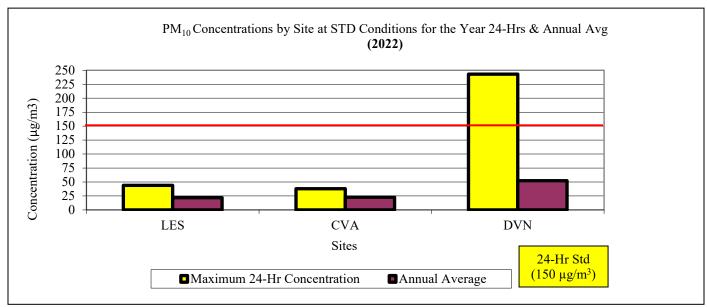


Figure 9.3 PM₁₀ Concentrations for San Diego - by Site at Standard Conditions (STD) for the Year

<u>Section 9.4.3 PM₁₀ Concentrations for San Diego - by Site at Local Conditions (LC) for the Year (24-Hr & Annual Average)</u>

Table 9-12 and Figure 9.4 illustrate the data in Local Conditions (LC).

FOR INFORMATIONAL PURPOSES ONLY.

NAAQS is for DV calculations. Annual values are not comparable to the NAAQS.

Table 9-12 PM₁₀ Concentrations for San Diego - by Site at Local Conditions (LC) for the Year, 2022

No.	Site	Site	Maximum	Annual
		Abbreviation	Concentration	Average
			for 24-hrs	
(#)			$(\mu g/m^3)$	$(\mu g/m^3)$
1	Lexington	LES	43	22.2
	Elementary School			
2	Chula Vista	CVA	*	*
3	Donovan	DVN	*	*

^{*}The District only submits PM₁₀ data in local conditions for LES as part of PMcoarse data. No PM₁₀ data reported in local conditions at Chula Vista and Donovan.

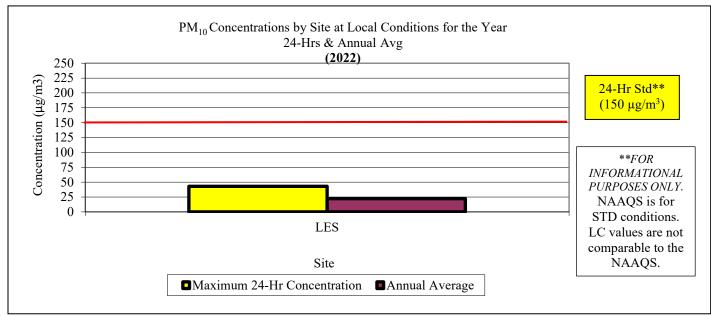


Figure 9.4 PM₁₀ Concentrations for San Diego - by Site at Local Conditions (LC) for the Year Graph (24-Hr & Annual Average)

Chapter 10: National Core (NCore)

Section 10.1 NCore Introduction

National Core (NCore) is a multi-pollutant network that integrates several advanced measurement systems for particles, as well as pollutant gases with the existing equipment for a Photochemical Assessment Monitoring Station (PAMS). The EPA designated the El Cajon-Lexington Elementary School (Figure 10.1) as the NCore site for the SDAB, so there is additional instrumentation, including PMcoarse (values calculated from paired Low-Volume particulate samplers, by subtracting the measured concentrations from a PM_{2.5} Low Volume sampler from the measured concentrations from a PM₁₀ Low Volume sampler.

Note: PMcoarse data will be calculated from PM data collected from the T640x analyzer that has been deployed at the designated NCore site at El Cajon – Lexington Elementary School), CO (trace level), SO₂ (trace level), and NO_y (Reactive Nitrogen Oxides).

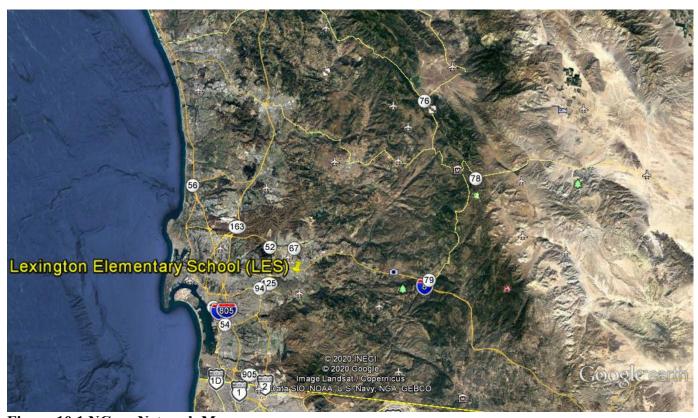


Figure 10.1 NCore Network Map

Section 10.1.1 NCore Minimum Monitoring Requirements

The District is federally mandated to measure multipollutants at lower levels for the NCore program in accordance with the CFR. This section will state the different monitoring requirements for each part of the NCore program (Note: only the passages applicable/informative to the District are referenced).

The District meets or exceeds all minimum requirements for NCore monitoring.

Section 10.1.2 PM₁₀ Minimum Monitoring Requirements-Ambient

Several Districts are required to operate instrumentation that is specific to the NCore program. Prior to 2016, participation was based on the population of the CBSA. Now, EPA directives are to maintain existing NCore stations. Table 10-1 summarizes these requirements.

3. Design Criteria for NCore Sites⁶²

(b) The NCore sites must measure, at a minimum, $PM_{2.5}$ particle mass using continuous and integrated/filter-based samplers, speciated $PM_{2.5}$, $PM_{10-2.5}$ particle mass, O_3 , SO_2 , CO, NO/NO_Y , wind speed, wind direction, relative humidity, and ambient temperature.(1) Although the measurement of NO_Y is required in support of a number of monitoring objectives, available commercial instruments may indicate little difference in their measurement of NO_Y compared to the conventional measurement of NO_X , particularly in areas with relatively fresh sources of nitrogen emissions. Therefore, in areas with negligible expected difference between NO_Y and NO_X measured concentrations, the Administrator may allow for waivers that permit NO_X monitoring to be substituted for the required NO_Y monitoring at applicable NC ore sites.

Table 10-1 NCore Minimum Monitoring Requirements-Equipment & Summary

Parameters	Number of	Number of	Number of
	Monitors	Monitors	Monitors
	Required	Active	Needed
	(#)	(#)	(#)
PM _{2.5} -Continuous=	1	1	0
PM _{2.5} -Manual (Integrated/filter-based)=	1	1	0
PM _{2.5} -Speciated=	1	1	0
PM _{10-2.5} (PMcoarse)=	1	1	0
NCore & PAMS O ₃ =	1	1	0
SO ₂ -TLE=	1	1	0
CO-TLE=	1	1	0
NCore & PAMS NO/NO _y =	1	1	0
NCore & PAMS Wind speed/Wind direction=	1	1	0
NCore & PAMS % Relative Humidity=	1	1	0
NCore & PAMS Ambient temperature=	1	1	0

^{*}PM₁₀-Manual sampling is not officially required, but PM_{10-2.5} sampling is required. In order obtain PM_{10-2.5} concentrations, PM_{2.5}-Manual and PM₁₀-Manual samplers must be run concurrently with the difference between the two to serve as the PM_{10-2.5} concentrations.

^{62 (2021) 40} CFR, Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring," Section 3, "Design Criteria for NCore Sites", part (b)

Section 10.2 NCore Suitability for Comparison to the NAAQS

Requirements for the sampling frequency of monitors for NCore pollutants are in the 40 CFR Part 58-"Ambient Air Quality Surveillance", Subpart B, Section 58.12 "Operating Schedules" and are shown in Table 10-2.

Table 10-2 NCore Suitability for Comparison to the NAAQS-Frequency & Equipment

1 abic 10-2 i	TCOIC	Sultabilit	y ioi c	ompa	ti ison t	o the i	TVAAQS-FTEQUENCY & Equipment					
Parameter Code		Code	Unit	Code	Duration	Code	Equipment	Method	Code	Sampling Frequency	Method ID	
Ozone	O ₃	44201	ppm	007	1-Hr	1	Thermo 49 series	Ultraviolet absorption	047	7/24	EQOA-0880-047	
Carbon monoxide Trace Level	СО	42101	ppb	008	1-Hr	1	Thermo 48i-TLE	Nondispersive infrared	554	7/24	RFCA-0981-054	
Sulfur dioxide Trace Level	SO_2	42401	ppb	008	1-Hr	1 5-min	Thermo 43i-TLE	Fluorescence	560	7/24	EQSA-0486-060	
Particulate Matter ≤ 2.5 μm (continuous)	PM _{2.5}	88502	μg/m ³ LC	105	1-Hr	1	Met One BAM 1020 w/VSCC	Beta Attenuation	733	7/24	Not Applicable	
Particulate Matter ≤ 2.5 µm (continuous)	PM _{2.5}	88502	μg/m ³ LC	105	1-Hr	1	Teledyne T640x*	Broadband Spectroscopy	238	7/24	EQPM-0516-238	
Particulate Matter ≤ 10 μm (continuous)	PM_{10}	85101 LC 81102-STD	μg/m ³ LC STD	105	1-Hr	1	Teledyne T640x*	Broadband Spectroscopy	239	7/24	EQPM-0516-239	
Particulate Matter ≤ 2.5 µm (speciated)	PM _{2.5} CSN	See EPA	See EPA	See EPA	24-Hr	7	URG-3000N	See EPA	See EPA	1:3	Not Applicable	
Particulate Matter ≤ 2.5 μm (speciated)	PM _{2.5} STN	See EPA	See EPA	See EPA	24-Hr	7	Met One SuperSASS	See EPA	See EPA	1:3	Not Applicable	
Particulate Matter ≤ 10 μm (Lo-Vol)	PM ₁₀	85101-LC 81102-STD	μg/m³ LC STD	105 001	24-Hr	7	Met One E-SEQ-FRM Sampler w/o VSCC	Gravimetric	246	1:3	RFPS-0717-246	
Particulate Matter ≤ 2.5 µm (manual)	PM _{2.5}	88101	μg/m ³ LC STD	105 001	24-Hr	7	Met One E-SEQ-FRM Sampler w/VSCC	Gravimetric	545	1:1 or 1:3	RFPS-0717-245	

^{*}Teledyne T640x installation dates at NCore (LES): 8/11/2022. Replaced Met One Bam 1020.

Section 10.3 NCore Concentrations

The instrumentation needed for NCore designation are: PMcoarse (calculated values from paired PM₁₀ & PM_{2.5} Low Volume samplers); CO (trace level); SO₂ (trace level); NO_y (total reactive Nitrogen Oxides). Table 10-3 to Table 10-7 list the data.

Table 10-3 NCore Concentrations for PM_{10-2.5} (PMcoarse)

PMcoarse (μg/m³)*	2016	2017	2018	2019	2020	2021	2022
Max. 24-Hr. Concentration	29.6	30.0	26.2	27.1	30.4	24.4	25.3
98th Percentile of 24-Hr Concentration	26.3	25.1	22.3	23.7	22.6	20.4	21.6
Average of the Quarterly Means	14.0	13.3	13.4	10.8	13.3	12.8	12.7

^{*}Note: PMcoarse (PMc) does not have FRM or FEM designation and cannot be compared to any NAAQS. FSD and ECA were combined

Table 10-4 NCore Concentrations for CO-TLE

CARBON MONOXIDE (ppm)	2016	2017	2018	2019	2020	2021	2022
Maximum 1-Hr. Concentration	1.7	1.5	1.5	1.3	1.6	1.2	1.5
Maximum 8-Hr. Concentration	1.3	1.4	1.1	1.0	1.4	1.1	1.1

Table 10-5 NCore Concentrations for SO₂-TLE

SULFUR DIOXIDE (ppm)	2016	2017	2018	2019	2020	2021	2022
Maximum 1-Hr SO ₂	0.001	0.001	0.003	0.001	0.002	0.002	0.001
Maximum 24-Hr SO ₂	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Annual Average SO ₂	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table 10-6 NCore Concentrations for NO_y-NO

NO _y –NO (ppm)**	2016	2017	2018	2019	2020	2021	2022
Maximum 1-Hr. Concentration	**	**	0.049	0.041	0.043	0.040	0.037
Annual Average	**	**	0.009	0.009	0.008	0.008	0.008

^{**}The NO_v sampler was not operational at the temporary NCore site at Floyd Smith Drive.

Table 10-7 NCore Concentrations for NO₂

NO ₂ (ppm)	2016	2017	2018	2019	2020	2021	2022
Maximum 1-Hr. Concentration	0.057	0.044	0.045	0.086	0.044	0.038	0.036
Annual Average	0.009	0.010	0.007	0.014	0.008	0.006	0.008

Chapter 11: Photochemical Assessment Monitoring Stations (PAMS)

Section 11.1 PAMS Introduction

PAMS and PAMS-related sampling will be conducted at Lexington Elementary School in El Cajon (see Figure 11.1). As yet, there are no NAAQS standards to compare the data. The location and equipment are listed in Table 11-1.

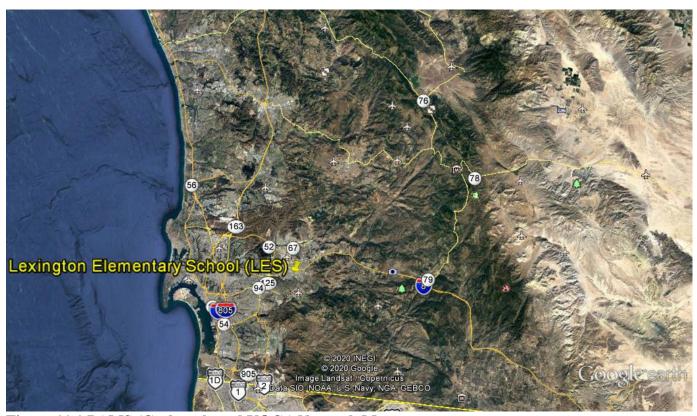


Figure 11.1 PAMS (Carbonyls and VOCs) Network Map

The range of compounds for the PAMS program is in excess of 50 different possible ozone precursors and other compounds (See Table 11-5 and Table 11-6). The toxicity is gauged by risk factors instead of limits.

Table 11-1 PAMS Sampling Network

	Abbreviation		LES				
	Name	Lexington Elementary School 06-073-1022					
	AQS ID						
	Monitor Type	SLAMS	SLAMS	SLAMS			
	Method	Auto	Cartridges	Cartridges			
	Affiliation	PAMS	PAMS	PAMS			
	Spatial Scale	NS	NS	NS			
PAMS	Site Type	PE	PE	PE			
Ь	Objective (Federal)	Research	Research	Research			
	Analysis By	APCD	APCD	APCD			
	Frequency	24/7	1:3	1:6			
	Equipment	GCFID	Atec 8000	Atec 8000			

Glossary of Terms

Monitor Type

E = EPA

O= Other

SLAMS= State & Local monitoring station

SPM= Special purpose monitor

CATAC= California Toxics Monitoring

Site Type HC= Highest concentration

PE= Population exposure

SO= Source oriented

UPBD= Upwind background

G/B= General/Background

RT= Regional Transport

WRI= Welfare related impacts

QA= Quality assurance

Method (Sampling/Analysis)

CL= Chemiluminescence

CT= Low Volume, size selective inlet, continuous

FL= Fluorescence

HV= High volume

IR= Nondispersive infrared

SI= High volume, size selective inlet

SP= Low volume, size selective inlet, speciated

SQ= Low volume, size selective inlet, sequential

UV= Ultraviolet absorption

Canister= Evacuated stainless steel canisters

Cartridges= Di-nitrophenylhydrazine cartridges

FSL= Fused Silica Lined

Filter= Quartz filters

Auto= GCFID continuous

Monitor Designation

PRI= Primary

QAC= Collocated

Network Affiliation

BG= Border Grant

CSN STN= Trends Speciation

CSN SU= Supplemental Speciation

NATTS= National Air Toxics Trends Stations

NCORE= National Core Multi-pollutants

NR= Near-road

PAMS= Photochemical Assessment Monitoring

Spatial Scale

MI= Micro

MS= Middle

NS= Neighborhood

Objective (Federal)

NAAQS= Suitable for NAAQS comparison

Research Research support PI= Public Information

N/A= Not Applicable

O= Other

Section 11.2 PAMS Minimum Monitoring Requirements

The PAMS program is a multipronged approach to understand, predict, and control ozone concentrations. Ozone is not emitted directly; it is created by the interactions of several different pollutants/emissions, e.g. oxides of nitrogen (NOx), and volatile organic compounds (VOC), some carbonyls, etc. This enhanced monitoring network to track these different emissions has several different monitoring requirements, e.g. laboratory needs, meteorological needs, etc. that the District operates and references therein (Note: only the passages applicable/informative to the District are referenced). This section will state these requirements. Some of these monitors or samplers can serve as fulfilling other network requirements, e.g. ambient O₃ monitor can fulfill a PAMS O₃ monitoring requirement.

The District meets or exceeds all minimum requirements for PAMS monitoring.

Section 11.2.1 PAMS Minimum Monitoring Requirements-Equipment

The District is required to operate equipment required for the PAMS parameters for a minimum sampling period. Table 11-2 lists these requirements.

- 5. Network Design for Photochemical Assessment Monitoring Stations (PAMS) and Enhanced Ozone Monitoring. (a) State and local monitoring agencies are required to collect and report PAMS measurements at each NCore site required under paragraph 3(a) of this appendix located in a CBSA with a population of 1,000,000 or more, based on the latest available census figures.(b) PAMS measurements include:⁶³
 - (1) Hourly averaged speciated volatile organic compounds (VOCs);
 - (2) Three 8-hour averaged carbonyl samples per day on a 1 in 3 day schedule, or hourly averaged formaldehyde;
 - (3) Hourly averaged O_3 ;
 - (4) Hourly averaged nitrogen oxide (NO), true nitrogen dioxide (NO₂), and total reactive nitrogen (NO_v);
 - (5) Hourly averaged ambient temperature:
 - (6) Hourly vector-averaged wind direction;
 - (7) Hourly vector-averaged wind speed;
 - (8) Hourly average atmospheric pressure;
 - (9) Hourly averaged relative humidity;
 - (10) Hourly precipitation;
 - (11) Hourly averaged mixing-height;
 - (12) Hourly averaged solar radiation; and
 - (13) Hourly averaged ultraviolet radiation.

^{63 (2021) 40} CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring", Section 5(a) & (b), "Network Design for Photochemical Assessment Monitoring Stations (PAMS) and Enhanced Ozone Monitoring Pollutant-Specific Design Criteria for SLAMS Sites"

Table 11-2 PAMS Minimum Sampling Requirements-Equipment & Summary

CFR Programs PAMS	Equipment Required	Equipment On-hand	Equipment Active	Equipment Needed
Requirements (name)	(#)	(#)	(#)	(#)
Hourly averaged speciated volatile organic compounds (VOCs)=	1	1	1	0
Three 8-hour averaged carbonyl samples per day on a 1:3=	1	1	1	0
NCore & PAMS O ₃ =	1	1	1	0
NO=	1	1	1	0
True-NO ₂ =	1	1	1	0
NCore & PAMS NO _y =	1	1	1	0
NCore & PAMS Hourly averaged ambient temperature=	1	1	1	0
NCore & PAMS Hourly vector-averaged wind direction=	1	1	1	0
Hourly average atmospheric pressure=	1	1	1	0
NCore & PAMS Hourly averaged relative humidity=	1	1	1	0
Hourly precipitation=	1	1	1	0
Hourly averaged mixing-height=	1	1	1	0
Hourly averaged solar radiation=	1	1	1	0
Hourly averaged ultraviolet radiation=	1	1	1	0

Section 11.2.2 PAMS Minimum Monitoring Requirements-Sampling Season

The District is required to operate PAMS parameters for a minimum sampling period. This section lists that requirement in Table 11-3.

- 5. Network Design for Photochemical Assessment Monitoring Stations (PAMS) and Enhanced Ozone Monitoring ⁶⁴
- (g) At a minimum, the monitoring agency shall collect the required PAMS measurements during the months of June, July, and August.

Table 11-3 PAMS Minimum Monitoring Requirements-Minimum Sampling Season

Minimum	Actual	Is the
PAMS	PAMS	PAMS
Monitoring	Monitoring	Monitoring
Period	Period	Period
		Active?
(months)	(months)	(yes/no)
June-August	June-August	Yes

Section 11.3 PAMS Sampling Frequency & Equipment

During the non-PAMS season, the auto-GC will not be operational.

⁶⁴ (2021) 40 CFR Part 58, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring," Section 5, "Network Design for Photochemical Assessment Monitoring Stations (PAMS) and Enhanced Ozone Monitoring", Part (g).

The auto-GC will sample every hour (24-hour sampling / daily). During the PAMS season (June to August), the PAMS carbonyls samplers will collect three samples that each have an 8-hour sampling duration. The 8-hour samples are collected on a set time schedule, as follows:

- 1. 0400 1200
- 2. 1200 2000
- 3. 2000 0400

See Table 11-4 for the summary of equipment used and Table 11-5 and Table 11-6 for the parameters.

Table 11-4 PAMS Sampling Equipment

Pollutant	Abbreviation	Samplers	Collection	Collection	Analytical	Parameter	Method
			Method	Frequency	Method	Code	Code
Volatile Organic Compounds	VOCs	n/a	Auto GC	24/7	GC-FID	Table 10.15	n/a
Carbonyl Compounds	n/a	Atec 8000	DNPH cartridges	1:3	HPLC	Table 10.16	202

Table 11-5 PAMS VOC Parameter Codes

Compound	Parameter
Ethylene	43203
Acetylene	43206
Ethane	43202
Propylene	43205
Propane	43204
Isobutane	43214
1-Butene	43280
n-Butane	43212
trans-2-Butene	43216
cis-2-Butene	43217
Isopentane	43221
1-Pentene	43224
n-Pentane	43220
Isoprene	43243
Trans-2-pentene	43226
cis-2-Pentene	43227
2.2-Dimethylbutane	43244
Cyclopentane	43242
2.3-Dimethylbutane	43284
2-Methylpentane	43285
3-Methylpentane	43230
1-Hexene	43245
n-Hexane	43231
Methylcyclopentane	43262
2.4-Dimethylpentane	43247
Benzene	45201
cyclohexane	43248
2-Methylhexane	43263
2.3-Dimethylpentane	43291
- J 1	

Compound	Parameter
2.2.4-Trimethylpentane	43250
n-Heptane	43232
Methylcyclohexane	43261
2.3.4-Trimethylpentane	43252
Toluene	45202
2-Methylheptane	43960
3-Methylheptane	43253
n-Octane	43233
Ethylbenzene	45203
m-Xylene	45205
p-Xylene	45206
Styrene	45220
o-Xylene	45204
n-Nonane	43235
Isopropylbenzene	45210
α–Pinene	43256
n-Propylbenzene	45209
m-Ethyltoluene	45212
p-Ethyltoluene	45213
1.3.5-Trimethylbenzene	45207
o-Ethyltoluene	45211
β–Pinene	43257
1.2.4-Trimethylbenzene	45208
n-Decane	43238
1.2.3-Trimethylbenzene	45225
m-Diethylbenzene	45218
p-Diethylbenzene	45219
Undecane	43954
Total PAMS	43000
Total NMOC	43102

Table 11-6 PAMS Carbonyls Parameter Codes

Compound	Parameter
Formaldehyde	43502
Acetaldehyde	43503
Acetone	43551

(left intentionally blank)

APPENDICES

Appendix A: Site Description Introduction

The appendices list the stations that comprise the San Diego Air Pollution Control District's ambient air quality network (Network) along with specific information required by the EPA for each monitor. This specific information is cross-referenced against the requirements for siting.

Federal requirements for the monitoring objectives and spatial scales, Table A-1, are in the CFR annual update on July 1 of every year, 40 CFR Part 58, Subpart G-Federal Monitoring, Appendix D, "Network Design Criteria for Ambient Air Quality Monitoring". Table A-1 summarizes these requirements and Table A-2 defines the terminology and lists the monitor types and the definitions.

Table A-1 Relationship between Site Types and Scales or Representativeness

Site Type	Definition	Appropriate Siting Scales	Permissible Scales &
			Definitions
Highest concentration,	Site located to determine the highest	Micro,	Micro $(0-100 \text{ meters})$,
	concentrations expected to occur in	Middle,	Middle $(100 - 500 \text{ meters})$
	the area covered by the network	Neighborhood,	Neighborhood (500 meters – 4 kilometers)
		Urban	Urban $(4 - 50 \text{ kilometers})$
Maximum ozone concentrations	Occurring downwind from the area of	Micro,	Micro $(0-100 \text{ meters})$,
	maximum precursor emissions.	Middle,	Middle $(100 - 500 \text{ meters})$
		Neighborhood,	Neighborhood (500 meters – 4 kilometers)
		Urban	Urban (4 – 50 kilometers)
Maximum precursor impact	Are typically placed near the	Micro,	Micro $(0-100 \text{ meters})$,
	downwind boundary of the central	Middle,	Middle $(100 - 500 \text{ meters})$
	business district (CBD) or primary	Neighborhood,	Neighborhood (500 meters – 4 kilometers)
	area of precursor emissions mix	Urban	Urban (4 – 50 kilometers)
Population Exposure	Sites located to determine typical	Neighborhood,	Neighborhood (500 meters – 4 kilometers)
•	concentrations in areas of high	Urban	Urban $(4 - 50 \text{ kilometers})$
	population density		,
Source Oriented	Site located to determine the impact of	Micro,	Micro $(0-100 \text{ meters})$,
	significant sources or source	Middle,	Middle $(100 - 500 \text{ meters})$
	categories on air quality	Neighborhood	Neighborhood (500 meters – 4 kilometers)
General/Background	Sites located to determine general	Urban,	Urban (4 – 50 kilometers)
2	background concentration levels	Regional	Regional $(50 - 1,000 \text{ kilometers})$
		***1	XX1 (4 5017)
Regional transport	Sites located to determine the extent	Urban,	Urban (4 – 50 kilometers)
	of regional pollutant transport among	Regional	Regional (50 – 1,000 kilometers)
	populated areas and in support of		
	secondary standards.		***
Welfare-related impacts	Sites located to measure air pollution	Urban,	Urban (4 – 50 kilometers)
	impacts on visibility, vegetation	Regional	Regional (50 – 1,000 kilometers)
	damage, or other welfare based		
	impacts		
Upwind Background	Sites located to measure	Neighborhood	Neighborhood (500 meters – 4 kilometers)
	overwhelming incoming transport of	Urban	Urban (4 – 50 kilometers)
	ozone. Situated in the predominant	Regional	Regional (50 – 1,000 kilometers)
	upwind direction from the maximum		
	precursor emissions location		
Quality Assurance	Site located for quality assurance	Micro,	Micro $(0 - 100 \text{ meters})$,
	requirements	Middle,	Middle $(100 - 500 \text{ meters})$
		Neighborhood,	Neighborhood (500 meters – 4 kilometers)
		Urban	Urban $(4 - 50 \text{ kilometers})$

Table A-2 Summary of Definitions in the Site Description Template

Glossary of Terms

Monitor Type
E= EPA
O= Other

SLAMS= State & Local monitoring station

SPM= Special purpose monitor

CATAC= California Toxics Monitoring

Site Type

HC= Highest concentration
PE= Population exposure
SO= Source oriented
UPBD= Upwind background
G/B= General/Background
RT= Regional Transport
WRI= Welfare related impacts
QA= Quality assurance

Method (Sampling/Analysis)

CL= Chemiluminescence

CT= Low Volume, size selective inlet, continuous

FL= Fluorescence HV= High volume

IR= Nondispersive infrared

SI= High volume, size selective inlet

SP= Low volume, size selective inlet, speciated SQ= Low volume, size selective inlet, sequential

UV= Ultraviolet absorption

Canister= Evacuated stainless steel canisters

Cartridges Di-nitrophenylhydrazine cartridges FSL= Fused Silica Lined

Filter= Quartz filters Auto= GCFID continuous

CAPS=Cavity Attenuated Phase Shift

BS=Broadband Spectroscopy <u>Monitor Designation</u>

PRI= Primary
QAC= Collocated

Network Affiliation

BG= Border Grant

CSN STN= Trends Speciation CSN SU= Supplemental Speciation

NATTS= National Air Toxics Trends Stations

NCORE= National Core Multi-pollutants

NR= Near-road

PAMS= Photochemical Assessment Monitoring

Spatial Scale
MI= Micro
MS= Middle

NS= Neighborhood

Objective (Federal)

NAAQS= Suitable for NAAQS comparison

Research= Research support
PI= Public Information
N/A= Not Applicable

O= Other

Federal requirements for correctly siting the inlet sample probe(s) are in the 40 CFR Part 58, Subpart G-Federal Monitoring, Appendix E, "Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring".

This specific information is presented in a site description template required by the EPA in all network plans. The pollutant monitors must be assigned a specific scale, type, monitoring objective, and designation. These parameters have specific guidelines that must be followed in order for the data collected from the monitors to be considered valid. Additionally, each monitor must meet certain physical parameters, e.g., distance from each other, distance from the road, distance from obstructions, etc. Table A-3 Summary of Probe Monitoring Paths summarizes these requirements. Figure A.1 illustrates the distances PM samplers must be from the nearest traffic lane.

Modifications to the Site Template and General Information

The EPA supplies monitoring organizations with a site description template to use for the input of site information in the Annual Network Report. The District has modified the site description template into two tables. The section of the EPA template that lists the distance from obstructions, collocated monitors, etc., has been moved into a separate table with a more detailed accounting of the requirements provided in Table A-3.

The traffic count is referenced to the closest cross street listed in the current Traffic Count database maintained by the San Diego Association of Governments (SANDAG). At some station locations, the closest cross street with an Annual Average Daily Traffic (AADT) count may be several hundred meters away. The vehicle count is estimated visually (this is stated, when applicable) and the traffic count for the closest major thoroughfare is also reported for comparison purposes. Traffic count data from SANDAG is done in 5-year allotments. All Traffic counts used for this report is from the latest SANDAG report.

Table A-3 Summary of Probe Monitoring Paths

Pollutant	Scale Scale	Height from the	Horizontal and vertical	Distance from trees	Average daily	Distance from
Tondunt	<maximum< td=""><td>ground to the</td><td>distance from supporting</td><td>to probe, inlet, or</td><td>traffic count</td><td>roadways to probe,</td></maximum<>	ground to the	distance from supporting	to probe, inlet, or	traffic count	roadways to probe,
	monitoring	probe, inlet or 80%	structures ² to probe, inlet,	90% of the		inlet, or monitoring
	path length>	of monitoring path ¹	or 90% of monitoring path ¹	monitoring path ¹		path ^{1,10}
(name)	(name)	(meters)	(meters)	(meters)	(#)	(meters)
(marre)	Middle	Min= 2, Max= 15	> 1	> 10	(")	(meters)
2 4 5 6	Neighborhood	Min= 2, Max= 15	> 1	> 10	For all scales	For all scales
$SO_2^{3,4,5,6}$	Urban	Min= 2, Max= 15	> 1	> 10	Not Applicable	Not Applicable
	Regional	Min= 2, Max= 15	> 1	> 10		Transition of the state of the
					For micro scale	For micro scale
	Micro	Min= 3.5, Max= 15	> 1	> 10	Not Applicable	Min= 2, Max= 10
					For all other scales	For all other scales
	Middle	Min= 2, Max= 15	> 1	> 10	≤ 10,000	10
$CO^{4,5,7}$	Neighborhood	Min= 2, Max= 15	> 1	> 10	15,000	25
		,			20,000	45
					30,000	80
					40,000	115
					50,000	135
					≥ 60,000	150
					For all scales	For all scales
	Middle	Min= 2, Max= 15	> 1	> 10	≥10,000	10
	Neighborhood	Min= 2, Max= 15	> 1	> 10	15,000	20
$O_3^{3,4,5}$	Urban	Min= 2, Max= 15	> 1	> 10	20,000	30
	Regional	Min= 2, Max= 15	> 1	> 10	40,000	50
					70,000	100
					$\geq 110,000$	250
					For all scales	For all scales
	Micro	Min= 2, Max= 7	> 1	> 10	≥ 10,000	10
NOy &	Middle	Min= 2, Max= 15	> 1	> 10	15,000	20
NO2 ^{3,4.5}	Neighborhood	Min= 2, Max= 15	> 1	> 10	20,000	30
NO2 ^e , ····	Urban,	Min= 2, Max= 15	> 1	> 10	40,000	50
	Regional	Min= 2, Max= 15	> 1	> 10	70,000	100
					≥ 110,000	250
					For all scales	For all scales
	Neighborhood	Min= 2, Max= 15	> 1	> 10	> 10,000	10
	Urban	Min= 2, Max= 15	> 1	> 10	15,000	20
PAMS ^{3,4,5}					20,000	30
					40,000	50
					70,000	100
					≥ 110,000	250
	Micro	Min= 2, Max= 7	> 2	> 10		Min= 5, Max= 15
						(street canyon)
						Min= 2, Max= 10
						(street)
Pb ^{3,4,5,6,8}						
PM ^{3,4,5,6,8,9}						
1.101) (i) (i) (i)				_
	Neighborhood	Min= 2, Max= 15	> 2	> 10		See
						Figure E-1
						(below)
	Urban	Min= 2, Max= 15	> 2	> 10		
	Ciban	141111 2, 1410A 13	- 2	- 10	<u> </u>	

¹Monitoring path for open path analyzers is applicable only to middle or neighborhood scale CO monitoring, middle, neighborhood, urban, and regional scale Now monitoring, and all applicable scales for monitoring SO₂, O₃ and O₃ precursors.

²When probe is located on a rooftop, this separation distance is in reference to walls, parapets, or penthouses located on roof.

³ Should be > 20 meters from the dripline of tree(s) and must be 10 meters from the dripline when the tree(s) act as an obstruction

⁴Distance from sampler, probe, or 90% of monitoring path to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the sampler, probe, or monitoring path. Sites not meeting this criterion may be classified as middle scale.

⁵Must have unrestricted airflow 270 degrees around the probe or sampler; 180 degrees if the probe is on the side of a building or a wall.

⁶The sampler, probe, or monitoring path should be away from minor source, such as furnace or incineration flues. The separation distance is dependent on the height of the minor source's emission point, the type of waste burned, and the quality of the fuel (sulfur, ash, or lead content). This criterion is designed to avoid undue influences from minor sources.

⁷For microscale CO monitoring sites, the probe must be > 10 meters from a street intersection and preferably at a midblock location

⁸ Collocated monitors must be within 4 meters of each other and at least 2 meters apart for flow rates > 200 liters/min or at least 1 meter apart for samplers having flow rates < 200 liters/min

⁹ For particulate sampling, a minimum of 2 meters of separation from walls, parapets, and structures is required for rooftop site placement.

 $^{^{10}}$ Measured from the edge of the nearest lane to the sampler or inlet.

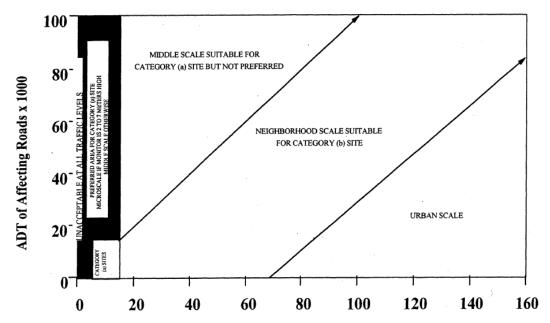
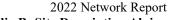



Figure A.1 Distance of PM samplers to nearest traffic lane

Appendix B: Site Description Alpine

Site Abbreviation: ALP Site AOS#: 06-073-1006

Page B-1 of 6

Appendix B: Alpine Station Description

Table B-1 General Site Information

County: San Diego

Representative Area: San Diego MSA

> Site Name: Alpine

Year Established: 1/1/1972

Site Address: 2300 W. Victoria Dr.

Site Name Abbreviation: ALP

AOS Number: 06-073-1006 Latitude: 32.842312°

Longitude: -116.768277°

Elevation above Sea Level: 627 m

General Location: Trailer adjacent to Padre Reservoir

Ground Cover: Asphalt

Distance to Road: 17 m west= W. Victoria Drive

W. Victoria Dr. estimated= 500 (no traffic count is available) Traffic Count

The closest cross-street with a traffic count is Alpine Blvd. at W. Victoria Dr. (2016 AADT):

(south/slightly upwind 760 m) = 3,300

Due to its geographical location, each year the Alpine station records the highest ozone levels Site Description:

within the air basin. All particulate equipment is on the rooftop of the station.

The Alpine location is used to assess downwind transport of fine particulates (PM_{2.5}). NO₂ data continues to provide information on trends and are an indication of the relative effectiveness of Monitoring Objectives: NO_x regulatory and control measures. The Alpine site also provides information used in making

burn/no-burn decisions.

Planned Changes: none

Figure B.1 Alpine – Picture of the Location of the Station

2022 Network Report Appendix B: Site Description Alpine Site Abbreviation: ALP Site AQS#: 06-073-1006 Page B-2 of 6

Table B-2 Alpine - Gaseous Pollutants Monitor Designations + Other

able B-2 Alpine				
Pollutant	O ₃	NO ₂	Other Zero Air	Other Calibrator
POC	1	1	N/A	N/A
Monitor designation	Primary	Primary	N/A	N/A
Parameter code	44201	42602 (NO ₂)	N/A	N/A
Basic monitoring objective	Public Information, NAAQS	Public Information, NAAQS	N/A	N/A
Site type	Highest Concentration	Population Exposure	N/A	N/A
Monitor type	SLAMS	SLAMS	N/A	N/A
Network affiliation	N/A	N/A	N/A	N/A
Instrument manufacturer & model	Thermo 49i	Teledyne-API T500U	Teledyne-API 701H	Teledyne-API T700U
Method code	047	212	N/A	N/A
FRM/FEM/ARM/Other	FEM	FEM	N/A	N/A
Collecting agency	APCD	APCD	APCD	APCD
Analytical laboratory	APCD	APCD	APCD	APCD
Reporting agency	APCD	APCD	APCD	APCD
Spatial scale	Urban Scale	Urban Scale	N/A	N/A
Monitoring start date	1/1/1979	1/1/2022	4/29/2015	4/29/2015
Current sampling frequency	Continuous	Continuous	N/A	N/A
Required sampling frequency	Continuous	Continuous	N/A	N/A
Sampling season	Year-round	Year-round	N/A	N/A
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A	N/A
Any PM Lo-Vol sampler w/in 2m	N/A	N/A	N/A	N/A
12/2Probe material for reactive gases	Borosilicate glass	Borosilicate glass	N/A	N/A
Residence time for reactive gases	8.30	5.81	N/A	N/A
Any changes within the next 18 months?	No	Yes	No	No
Suitable for comparison to the NAAQS?	Yes	Yes	N/A	N/A
Frequency of QC check (one-point)	1:1	1:1	1:1	N/A
Annual Performance Evaluation date	11/18/2022	11/09/2022	09/20/2022	N/A
NPAP date	*	*	N/A	N/A

^{*}Not done this year

Appendix B: Site Description Alpine
Site Abbreviation: ALP
Site AQS#: 06-073-1006 Page B-3 of 6

Table B-3 Alpine - Particulate Pollutants Monitor Designations

Pollutant	PM _{2.5} Continuous (non-FEM)	PM _{2.5} Continuous (FEM)	PM ₁₀ Continuous (FEM)	Black Carbon
POC	1	3	3	1
Monitor designation	Other	Primary	Primary	Other
Parameter code	88502 (LC)	88101 (LC)	81102 (STP)	88313
Basic monitoring objective	Public Information, NAAQS	NAAQS	NAAQS	Public Information
Site type	Population Exposure	Population Exposure	Population Exposure	Population Exposure
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation	N/A	N/A	N/A	N/A
Instrument manufacturer & model	Met One BAM 1020	Teledyne-API T640x	Teledyne-API T640x	Met One BC 1060
Method code	733	238	239	879
FRM/FEM/ARM/Other	Other (non-FEM)	FEM	FEM	Other
Collecting agency	APCD	APCD	APCD	APCD
Analytical laboratory	APCD	APCD	APCD	APCD
Reporting agency	APCD	APCD	APCD	APCD
Spatial scale	Urban Scale	Urban Scale	Urban Scale	Urban Scale
Monitoring start date	4/2015	9/8/2022	9/8/2022	6/2020
Current sampling frequency	Continuous	Continuous	Continuous	Continuous
Required sampling frequency	Continuous	Continuous	Continuous	Continuous
Sampling season	Year-round	Year-round	Year-round	Year-round
Any PM Lo-Vol sampler w/in 1m	None	None	None	None
Any PM Hi-Vol sampler w/in 2m	None	None	None	None
Probe material for reactive gases	N/A	N/A	N/A	N/A
Residence time for reactive gases	N/A	N/A	N/A	N/A
Any changes within the next 18 months?	Yes	No	No	No
Suitable for comparison to the NAAQS?	No	Yes	Yes	No
Frequency of flow rate verification	Semi-Monthly	Semi-Monthly	Semi-Monthly	Monthly
Semi-Annual flow rate audits dates	04/28/2022, 09/08/2022	11/16/2022	11/16/2022	04/28/2022, 11/16/2022
Additional QA flow rate check dates*	01/14/2022, 07/06/2022, 09/08/2022	09/08/2022	09/08/2022	01/12/2022, 07/06/2022
PEP date	**	**	**	N/A

^{*}Additional QA checks are not official audits

^{**}Not done this year

Appendix B: Site Description Alpine Site Abbreviation: ALP

Site Abbreviation: ALP Site AQS#: 06-073-1006 Page B-4 of 6

Table B-4 Alpine - Meteorology Equipment Designations + Other

Pollutant	Other Internal Temp	Meteorological Wind Speed	Meteorological Wind Direction	Meteorological External Temp	Meteorological Rel. Humidity		
POC	1	1	1	1	1		
Monitor designation	N/A	N/A	N/A	N/A	N/A		
Parameter code	62107	61101	61104	62101	62201		
Basic monitoring objective	N/A	N/A	N/A	N/A	N/A		
Site type	N/A	N/A	N/A	N/A	N/A		
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS		
Network affiliation	N/A	N/A	N/A	N/A	N/A		
Instrument manufacturer & model	Qualimetrics	Qualimetrics 2030	Qualimetrics 2020	Rotronics	Rotronics		
Method code	012	050	020	040	012		
FRM/FEM/ARM/Other	Other	Other	Other	Other	Other		
Collecting agency	APCD	APCD	APCD	APCD	APCD		
Analytical laboratory	APCD	APCD	APCD	APCD	APCD		
Reporting agency	APCD	APCD	APCD	APCD	APCD		
Spatial scale	Urban	Urban	Urban	Urban	Urban		
Monitoring start date	4/2015	4/2015	4/2015	4/2015	1972		
Current sampling frequency	Continuous	Continuous	Continuous	Continuous	Continuous		
Required sampling frequency	Continuous	Continuous	Continuous	Continuous	Continuous		
Sampling season	Year-round	Year-round	Year-round	Year-round	Year-round		
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A	N/A	N/A		
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A	N/A	N/A		
Probe material for reactive gases	N/A	N/A	N/A	N/A	N/A		
Residence time for reactive gases	N/A	N/A	N/A	N/A	N/A		
Any changes within the next 18 months?	No	No	No	No	No		
Suitable for comparison to the NAAQS?	N/A	N/A	N/A	N/A	N/A		
Frequency of QC check (one-point)	N/A	N/A	N/A	N/A	N/A		
Annual Performance Evaluation date	11/16/2022	11/18/2022	*	11/16/2022	11/16/2022		
NPAP date	N/A	**	**	**	**		

^{*} Not performed this year

^{**} EPA subcontractor does not have the equipment to audit

Appendix B: Site Description Alpine

Site Abbreviation: ALP Site AQS#: 06-073-1006

Page B-5 of 6

Table R-5 Alnine - Distance the Equipment are from Influences

Table B-5 Alp	ine -	Dista	ance t	he E	quip	<u>ment</u>	are i	rom	<u>Influ</u>	ence	S								
(meters)	Gas Inlet	NOy Inlet	Pb-TSP, PRI (44.5 cfm)	Pb-TSP, QAC (44.5 cfm)	PM ₁₀ , PRI (16.7 lpm)	PM ₁₀ , QAC (16.7 lpm)	BC 1060	PM _{2.5} FRM, PRI (16.7 lpm)	PM _{2.5} FRM, QAC (16.7 lpm)	PM _{2.5} non-FEM (16.7 lpm)	PM _{2.5} STN (6.7 lpm)	PM _{2.5} CSN (22.0 lpm)	† PAMS-VOC* (50 ccpm)	† PAMS-VOC, QAC (50 ccpm)	† PAMS-Carbonyls (1.5 lpm)	† Toxics-VOC (50 ccpm)	† Toxics-VOC, QAC (50 ccpm)	Toxics-Metals (12 lpm)	Meteorology
Gas Inlet	n/a						4.1			1.2									5.9
NOy Inlet																			
Pb-TSP, PRI																			
Pb-TSP, QAC																			
PM ₁₀ , PRI																			
PM ₁₀ , QAC																			
BC 1060	4.1						n/a_			3.1									4.8
PM _{2.5} FRM, PRI																			
PM _{2.5} FRM, QAC																			
PM _{2.5} non-FEM	1.2						3.1			n/a_									4.7
PM _{2.5} STN																			
PM _{2.5} CSN																			
†PAMS-VOC																			
†PAMS-VOC QAC																			
†PAMS-Carbonyls																			
†Toxics-VOC																			
†Toxics-VOC, QAC																			
Toxics-Metals																			
Meteorology	5.9						4.8			4.7									n⁄a_
height from ground	6.7						6.0			6.8									10.2
distance: from the road	17.0						16.0			16.0									14.4
from the supporting structure (wood deck)	2.2						1.4			2.3									5.6
from obstructions on roof	N						N			N									N
from obstructions not on roof	N						N			N									N
from the closest tree	37.0						40.0			38.0									38.0
from furnace/flue	N						N			N									N
unrestricted air flow (degrees)	360						360			360									360

n/a= Not Applicable; N= None; †On the side of the station/trailer; *Currently no canister sampling for PAMS. PAMS re-engineered program at Lexington Elementary School.

2022 Network Report Appendix B: Site Description Alpine

Site Abbreviation: ALP Site AQS#: 06-073-1006

Page B-6 of 6

Figure B.2 Alpine – Pictures (Directional) from the Rooftop

Appendix C: Site Description Camp Pendleton

Site Abbreviation (CMP) AQS# 06-073-1008 Page C-1 of 6

Appendix C: Camp Pendleton Station Description

Table C-1 General Site Information

County: San Diego

Representative Area: San Diego MSA

Site Name: Camp Pendleton

Year Established: 4/1997

Site Address: 21441 West B St.

Site Name Abbreviation: CMP

AQS Number: 06-073-1008 Latitude: 33.217063 °

Longitude: -117.396169°

Elevation above Sea Level: 16 m

Site Description:

General Location:

Trailer in the W corner of the parking lot across the Corporal Training facility and above the Del

Mar beach on Camp Pendleton.

Ground Cover: Asphalt

Distance to Road: 41 m west= B St.

Traffic Count B St. estimated= 500 (No traffic count is available for the base)

(2017 AADT): The closest area with a traffic count, Interstate 5 (east/downwind 440 m)= 171,000

This station is a trailer located within the Marine Corps Camp Pendleton Base and sits atop a bluff overlooking the Pacific Ocean. In 1997, it replaced the Oceanside station about 7.6 km south east (east of I-5) of the CMP location. Due to its geographical location, this station records over-water transport from the South Coast Air Basin. Diesel truck motor pool 61 m

west of the stations and at the base of the bluffs.

Monitoring Objectives:

This site functions as a transport site due to its geographical location. It is used to provide

information on trends for the pollutants, including Ozone, NO_x, and PM_{2.5}.

Not within the next 18-mon, but due to structures and heavy machinery (motor pool) encroaching on the station, as well as frequent power outages, this station will need to be relocated at some point. Once a suitable replacement location has been secured, the District

 $will\ work\ with\ EPA\ to\ formalize\ the\ relocation\ process.$

Figure C.1 Camp Pendleton – Picture of the Location of the Station


2022 Network Report Appendix C: Site Description Camp Pendleton Site Abbreviation (CMP) AQS# 06-073-1008

Page C-2 of 6

Table C-2 Camp Pendleton - Gaseous Pollutants Monitor Designations + Other

Pollutant	O ₃	NO ₂	Other Zero Air	Other Calibrator
POC	1	1	N/A	N/A
Monitor designation	Primary	Primary	N/A	N/A
Parameter code	44201	42602 (NO ₂)	N/A	N/A
Basic monitoring objective	Public Information, NAAQS	Public Information, NAAQS	N/A	N/A
Site type	Population Exposure	Population Exposure	N/A	N/A
Monitor type	SLAMS	SLAMS	N/A	N/A
Network affiliation	N/A	N/A	N/A	N/A
Instrument manufacturer & model	Thermo 49i	Teledyne API T500U	Teledyne-API 701H	Teledyne-API T700U
Method code	047	212	N/A	N/A
FRM/FEM/ARM/Other	FEM	FEM	N/A	N/A
Collecting agency	APCD	APCD	APCD	APCD
Analytical laboratory	APCD	APCD	APCD	APCD
Reporting agency	APCD	APCD	APCD	APCD
Spatial scale	Neighborhood Scale	Neighborhood Scale	Not Applicable	Not Applicable
Monitoring start date	1997	1997	4/29/2015	4/29/2015
Current sampling frequency	Continuous	Continuous	N/A	N/A
Required sampling frequency	Continuous	Continuous	N/A	N/A
Sampling season	Year round	Year round	N/A	N/A
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A	N/A
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A	N/A
Probe material for reactive gases	Borosilicate glass	Borosilicate glass	N/A	N/A
Residence time for reactive gases	5.03	7.16	N/A	N/A
Any changes within the next 18 months?	No	Yes	No	No
Suitable for comparison to the NAAQS?	Yes	Yes	N/A	N/A
Frequency of QC check (one-point)	1:1	1:1	1:1	N/A
Annual Performance Evaluation date	03/03/2022	03/09/2022	08/23/2022	N/A
NPAP date	*	*	N/A	N/A

^{*} Not performed this year

2022 Network Report Appendix C: Site Description Camp Pendleton Site Abbreviation (CMP) AQS# 06-073-1008 Page C-3 of 6

Table C-3 Camp Pendleton - Particulate Pollutants Monitor Designations

Pollutant	PM _{2.5} Continuous (non-FEM)	PM _{2.5} Continuous (FEM)	PM ₁₀ Continuous (FEM)
POC	1	3	3
Monitor designation	Other	Primary	Primary
Parameter code	88502 (LC)	88101 (LC)	88102(STP)
Basic monitoring objective	Public Information, Research	NAAQS	NAAQS
Site type	N/A	Population Exposure	Population Exposure
Monitor type	0	SLAMS	SLAMS
Network affiliation	N/A	N/A	N/A
Instrument manufacturer & model	Met One BAM 1020	Teledyne-API T640x	Teledyne-API T640x
Method code	733	238	239
FRM/FEM/ARM/Other	Other (non-FEM)	FEM	FEM
Collecting agency	APCD	APCD	APCD
Analytical laboratory	APCD	APCD	APCD
Reporting agency	APCD	APCD	APCD
Spatial scale	Urban	Urban Scale	Urban Scale
Monitoring start date	10/24/2005	8/30/2022	8/30/2022
Current sampling frequency	Continuous	Continuous	Continuous
Required sampling frequency	Continuous	Continuous	Continuous
Sampling season	Year-round	Year-round	Year-round
Any PM Lo-Vol sampler w/in 1m	None	None	None
Any PM Hi-Vol sampler w/in 2m	None	None	None
Probe material for reactive gases	N/A	N/A	N/A
Residence time for reactive gases	N/A	N/A	N/A
Any changes within the next 18 months?	Yes	No	No
Suitable for comparison to the NAAQS?	No	Yes	Yes
Frequency of flow rate verification	Semi-monthly	Semi-Monthly	Semi-Monthly
Semi-Annual flow rate audits dates	03/23/2022, 08/23/2022	12/28/2022	12/28/2022
Additional QA flow rate check dates*	05/27/2022, 08/30/2022	08/30/2022	08/30/2022
PEP date	**	**	**

^{*}Additional QA checks are not official audits

^{**}Not done this year

Table C-4 Camp Pendleton - Meteorological Equipment Designations + Other

able C-4 Camp I	Penaleton - M		quipment Desi	gnations + O
Pollutant	Other Internal Temp	Meteorological Wind Speed	Meteorological Wind Direction	Meteorological External Temp
POC	1	1	1	1
Monitor designation	N/A	N/A	N/A	N/A
Parameter code	62107	61101	61104	62101
Basic monitoring objective	N/A	N/A	N/A	N/A
Site type	N/A	N/A	N/A	N/A
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation	N/A	N/A	N/A	N/A
Instrument manufacturer & model	Qualimetrics 4480	Qualimetrics 2030	Qualimetrics 2020	Qualimetrics 4480
Method code	012	050	020	040
FRM/FEM/ARM/Other	Other	Other	Other	Other
Collecting agency	APCD	APCD	APCD	APCD
Analytical laboratory	APCD	APCD	APCD	APCD
Reporting agency	APCD	APCD	APCD	APCD
Spatial scale	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitoring start date	1997	1997	1997	1997
Current sampling frequency	Continuous	Continuous	Continuous	Continuous
Required sampling frequency	Continuous	Continuous	Continuous	Continuous
Sampling season	Year-round	Year-round	Year-round	Year-round
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A	N/A
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A	N/A
Probe material for reactive gases	N/A	N/A	N/A	N/A
Residence time for reactive gases	N/A	N/A	N/A	N/A
Any changes within the next 18 months?	No	No	No	No
Suitable for comparison to the NAAQS?	N/A	N/A	N/A	N/A
Frequency of QC check (one-point)	N/A	N/A	N/A	N/A
Annual Performance Evaluation date	08/24/2022	12/28/2022	*	08/24/2022
NPAP date	N/A	**	**	**

^{*}Not performed this year

^{**}EPA subcontractor does not have the equipment to audit.

Appendix C: Site Description Camp Pendleton Site Abbreviation (CMP)

AQS# 06-073-1008 Page C-5 of 6

Table C-5	Cam	p Pei	ndlete	on - I	Distar	ice tł	ie Eg	uipm	ent a	re fr	om I	nflue	nces						
(meters)	Gas Inlet	NOy Inlet	Pb-TSP, PRI (44.5 cfm)	Pb-TSP , QAC (44.5 cfm)	PM ₁₀ , PRI (16.7 lpm)	PM _{10,} QAC (16.7 lpm)	BC 1060	PM _{2.5} FRM, PRI (16.7 lpm)	PM _{2.5} FRM, QAC (16.7 lpm)	PM _{2.5} , PM ₁₀ FEM (16.7 lpm)	PM _{2.5} STN (6.7 lpm)	PM _{2.5} CSN (22.0 lpm)	† PAMS-VOC* (50 ccpm)	† PAMS-VOC, QAC (50 ccpm)	† PAMS-Carbonyls (1.5 lpm)	† Toxics-VOC (50 ccpm)	† Toxics-VOC, QAC (50 ccpm)	Toxics-Metals (12 lpm)	Meteorology
Gas Inlet	n⁄a_									1.5									5.3
NOy Inlet																			
Pb-TSP, PRI																			
Pb-TSP, QAC																			
PM ₁₀ , PRI																			
PM ₁₀ , QAC																			
BC 1060																			
PM _{2.5} FRM, PRI																			
PM _{2.5} FRM, QAC																			
PM _{2.5} , PM ₁₀ FEM	1.5									n⁄a.									5.7
PM _{2.5} STN																			
PM _{2.5} CSN																			
†PAMS-VOC																			
†PAMS-VOC QAC																			
†PAMS-Carbonyls																			
†Toxics-VOC																			
†Toxics-VOC, QAC																			
Toxics-Metals																			
Meteorology	5.3									5.7									n/a
height from ground	5.6									5.6									10.7
distance: from the road	45									47									45
from the supporting structure (wood deck)	2.2									2.2									7.3
from obstructions on roof	N									N									N
from obstructions not on roof	N									N									N
from the closest tree	40									40									41
from furnace/flue	N									N									N
unrestricted air flow (degrees)	360									360									360

n/a= Not Applicable; N= None; †On the side of the station/trailer; * PAMS canister sampling is not being performed. PAMS sampling is performed at Lexington Elementary School as part of the PAMS re-engineering

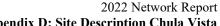


Figure C.2 Camp Pendleton – Pictures (Directional) from the Rooftop

Appendix D: Site Description Chula Vista Site Abbreviation: CVA

AQS# 06-073-0001 Page D-1 of 7

Appendix D: Chula Vista Station Description

Table D-1 General Site Information

County: San Diego

Representative Area: San Diego MSA

Site Name: Chula Vista

Year Established: 01/20/1972

Site Address: 84 East J St.

Site Name Abbreviation: CVA

AQS Number: 06-073-0001 Latitude: 32.631175°

Longitude: -117.059115^o

Elevation above Sea Level: 55 m

General Location: Trailer in the W corner of the Chula Vista Elementary School District offices parking lot

Ground Cover: Asphalt

Distance to Road: 51 m northwest= E. J St.; 301 m south-southeast Hilltop Dr.

Traffic Count (2016 AADT): Hilltop Dr. at E. J St.= 9,100

Site Description: This station is a trailer located on the western corner of the Chula Vista Elementary School

District Administration property, immediately south of Chula Vista Fire Station No. 2.

Monitoring Objectives: Helps track trends for an area that has a high rate of asthma.

Planned Changes: This station and work area will be demolished and reconfigured, respectively (date TBD).

During this phase, there will be no sampling (EPA approved).

Figure D.1 Chula Vista – Pictures of the Location of the Station

2022 Network Report Appendix D: Site Description Chula Vista Site Abbreviation: CVA

AQS# 06-073-0001 Page D-2 of 7

Table D-2 Chula Vista - Gaseous Pollutants Monitor Designations + Other

Pollutant	O ₃	NO ₂	Other Zero Air	Other Calibrator
POC	1	1	N/A	N/A
Monitor designation	Primary	Primary	N/A	N/A
Parameter code	44201	42602 (NO ₂)	N/A	N/A
Basic monitoring objective	Public Information, NAAQS	Public Information, NAAQS	N/A	N/A
Site type	Population Exposure	Population Exposure	N/A	N/A
Monitor type	SLAMS	SLAMS	N/A	N/A
Network affiliation	N/A	N/A	N/A	N/A
Instrument manufacturer & model	Thermo 49i	Teledyne-API T500U	Teledyne-API 701H	Teledyne-API T700U
Method code	047	212	N/A	N/A
FRM/FEM/ARM/Other	FEM	FEM	N/A	N/A
Collecting agency	APCD	APCD	APCD	APCD
Analytical laboratory	APCD	APCD	APCD	APCD
Reporting agency	APCD	APCD	APCD	APCD
Spatial scale	Neighborhood Scale	Neighborhood Scale	N/A	N/A
Monitoring start date	1972	1972	2015	2015
Current sampling frequency	Continuous	Continuous	N/A	N/A
Required sampling frequency	Continuous	Continuous	N/A	N/A
Sampling season	Year-round	Year-round	N/A	N/A
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A	N/A
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A	N/A
Probe material for reactive gases	Borosilicate glass	Borosilicate glass	N/A	N/A
Residence time for reactive gases	5.59	3.85	N/A	N/A
Any changes within the next 18 months?	Yes	Yes	Yes	Yes
Suitable for comparison to the NAAQS?	Yes	Yes	N/A	N/A
Frequency of QC check (one-point)	1:1	1:1	1:1	N/A
Annual Performance Evaluation date	03/24/2022	03/24/2022	11/02/2022	N/A
NPAP date	9/7/2022	*	N/A	N/A

^{*}Not done this year

Appendix D: Site Description Chula Vista Site Abbreviation: CVA

AQS# 06-073-0001 Page D-3 of 7

Table D-3 Chula Vista - Particulate Po<u>llutants</u> Monitor Designations

able D-3 Chula '	Vista - Particulate Pollutan								
Pollutant	PM _{2.5} Manual	PM ₁₀ Manual							
POC	1	1							
Monitor designation	Primary	Primary							
Parameter code	88101 (LC)	81102 (STP)*							
Basic monitoring objective	NAAQS	NAAQS							
Site type	Population Exposure	Population Exposure							
Monitor type	SLAMS	SLAMS							
Network affiliation	N/A	N/A							
Instrument manufacturer & model	Met One E-SEQ-FRM	Met One E-SEQ-FRM							
Method code	545	246							
FRM/FEM/ARM/Other	FRM	FRM							
Collecting agency	APCD	APCD							
Analytical laboratory	APCD	APCD							
Reporting agency	APCD	APCD							
Spatial scale	Neighborhood Scale	Neighborhood Scale							
Monitoring start date	1999	1986							
Current sampling frequency	1:3	1:6							
Required sampling frequency	1:3	1:6							
Sampling season	Year-round	Year-round							
Any PM Lo-Vol sampler w/in 1m	None	None							
Any PM Hi-Vol sampler w/in 2m	None	None							
Probe material for reactive gases	N/A	N/A							
Residence time for reactive gases	N/A	N/A							
Any changes within the next 18 months?	Yes	Yes							
Suitable for comparison to the NAAQS?	Yes	Yes							
Frequency of flow rate verification	Monthly	Monthly							
Semi-Annual flow rate audits dates	02/09/2022, 08/31/2022	02/09/2022, 08/31/2022							
Additional QA flow rate check dates**	04/18/2022, 11/21/2022	04/18/2022, 11/21/2022							
PEP date	5/11/2022, 8/24/2022	N/A							

^{*} Flow checks and operations are in LC and concentration data is in STD

** Additional QA checks are not official audits

2022 Network Report Appendix D: Site Description Chula Vista Site Abbreviation: CVA

Site Abbreviation: CVA AQS# 06-073-0001 Page D-4 of 7

Table D-4 Chula Vista - Other Pollutants Monitor Designations

able D-4 Chula	vista - Other	10113		
Pollutant	Toxics- VOC	Toxics- Metals	Toxics- Cr(VI)	Toxics- Aldehyde
POC	See ARB	See ARB	See ARB	See ARB
Monitor designation	N/A	N/A	N/A	N/A
Parameter code	See ARB	See ARB	See ARB	See ARB
Basic monitoring objective	Research	Research	Research	Research
Site type	Population Exposure	Population Exposure	Population Exposure	Population Exposure
Monitor type	CA Toxics	CA Toxics	CA Toxics	CA Toxics
Network affiliation	CA Toxics	CA Toxics	CA Toxics	CA Toxics
Instrument manufacturer & model	Xontech 910	Xontech 924	Xontech 924	Xontech 924
Method code	See ARB	See ARB	See ARB	See ARB
FRM/FEM/ARM/Other	Other	Other	Other	Other
Collecting agency	APCD	APCD	APCD	APCD
Analytical laboratory	ARB	ARB	ARB	ARB
Reporting agency	ARB	ARB	ARB	ARB
Spatial scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale
Monitoring start date	1988	1988	1988	1988
Current sampling frequency	1:12	1:12	1:12	1:12
Required sampling frequency	1:6	1:6	1:6	1:6
Sampling season	Year-round	Year-round	Year-round	Year-round
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A	N/A
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A	N/A
Probe material for reactive gases	N/A	N/A	N/A	N/A
Residence time for reactive gases	N/A	N/A	N/A	N/A
Any changes within the next 18 months?	Yes	Yes	Yes	Yes
Suitable for comparison to the NAAQS?	N/A	N/A	N/A	N/A
Frequency of flow rate verification	N/A	N/A	N/A	N/A
Annual Performance Evaluation date	N/A	N/A	N/A	N/A
NPAP date	N/A	N/A	N/A	N/A

Appendix D: Site Description Chula Vista

Site Abbreviation: CVA AQS# 06-073-0001 Page D-5 of 7

Table D-5 Chula Vista - Meteorological Equipment Designations + Other

Pollutant	Other Internal Temp	Meteorological Wind Speed	Meteorological Wind Direction	Meteorological External Temp		
POC	1	1	1	1		
Monitor designation	N/A	N/A	N/A	N/A		
Parameter code	62107	61101	61104	62101		
Basic monitoring objective	N/A	N/A	N/A	N/A		
Site type	N/A	N/A	N/A	N/A		
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS		
Network affiliation	N/A	N/A	N/A	N/A		
Instrument manufacturer & model	Qualimetrics 4480	Qualimetrics 2030	Qualimetrics 2020	RM Young 41382VF		
Method code	012	050	020	040		
FRM/FEM/ARM/Other	Other	Other	Other	Other		
Collecting agency	APCD	APCD	APCD	APCD		
Analytical laboratory	APCD	APCD	APCD	APCD		
Reporting agency	APCD	APCD	APCD	APCD		
Spatial scale	Neighborhood	Neighborhood	Neighborhood	Neighborhood		
Monitoring start date	1972	1972	1972	1998		
Current sampling frequency	Continuous	Continuous	Continuous	Continuous		
Required sampling frequency	Continuous	Continuous	Continuous	Continuous		
Sampling season	Year-round	Year-round	Year-round	Year-round		
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A	N/A		
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A	N/A		
Probe material for reactive gases	N/A	N/A	N/A	N/A		
Residence time for reactive gases	N/A	N/A	N/A	N/A		
Any changes within the next 18 months?	Yes	Yes	Yes	Yes		
Suitable for comparison to the NAAQS?	N/A	N/A	N/A	N/A		
Frequency of QC check (one-point)	N/A	N/A	N/A	N/A		
Annual Performance Evaluation date	08/31/2022	N/A	N/A	11/02/2022		
NPAP date	N/A	*	*	*		

Note: Deck needs repairs (TBD)
* EPA subcontractor does not have the equipment to audit.

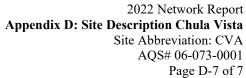
Appendix D: Site Description Chula Vista

Site Abbreviation: CVA AQS# 06-073-0001 Page D-6 of 7

Table D-6 Chula Vista - Distance the Equipment are from Influences

Table D-6 (<u> 'hula</u>	ı Vist	a - D	istan	ce the	e Equ	iipme	ent ar	<u>e fro</u>	m In	fluen	ces							
(meters)	Gas Inlet	NOy Inlet	Pb-TSP, PRI (44.5 cfm)	Pb-TSP, QAC (44.5 cfm)	PM ₁₀ , PRI, (16.7 lpm)	PM ₁₀ , QAC (16.7 lpm)	BC 1060	PM _{2.5} FRM, PRI (16.7 lpm)	PM _{2.5} FRM, QAC (16.7 lpm)	PM _{2.5} non-FEM (16.7 lpm)	PM _{2.5} STN (6.7 lpm)	PM _{2.5} CSN (22.0 lpm)	† PAMS-VOC (50 ccpm)	† PAMS-VOC, QAC	† PAMS-Carbonyls (1.5 lpm)	Toxics-VOC (50 ccpm)	Toxics-VOC, QAC (50 ccpm)	Toxics-Metals (12 lpm)	Meteorology
Gas Inlet	n⁄a_				4.8			n/a								1.4		n/a	8.0
NOy Inlet																			
Pb-TSP, PRI																			
Pb-TSP, QAC																			
PM ₁₀ , PRI	4.8				n/a_			7.5								4.8		11.9	n/a
PM ₁₀ , QAC																			
BC 1060																			
PM _{2.5} FRM, PRI	n/a				7.5			n/a								n/a		4.4	n/a
PM _{2.5} FRM, QAC																			
PM _{2.5} non-FEM																			
PM _{2.5} STN																			
PM _{2.5} CSN																			
†PAMS-VOC																			
†PAMS-VOC, QAC																			
†PAMS-Carbonyls																			
Toxics-VOC	1.4				4.8			n/a								n/a		n/a	8.2
Toxics-VOC, QAC																			
Toxics-Metals	n/a				11.9			4.4								n/a		n/a	9.9
Meteorology	8.0				n/a			n/a								8.2		9.9	n/a_
height from ground	6.1				2.1			2.1								5.4		2.2	10.7
distance: from the road	61				63			60								61		56	55
from the supporting structure	N				N			N								N		N	6.9
from obstructions on roof	N				N			N								N		N	N
from obstructions not on roof	N				N			N								N		N	N
from the closest tree	N				N			N								N		N	N
from furnace/flue	N				N			N								N		N	N
unrestricted air flow (degrees)	360	one: ‡Oı			270			270								360		270	360

n/a= Not Applicable; N= None; †On the side of the station/trailer



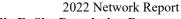


Figure D.2 Chula Vista – Pictures (Directional) from the Ground

Appendix E: Site Description Donovan

Site Abbreviation: DVN AQS# 06-073-1014 Page E-1 of 8

Appendix E: Donovan Station Description

Table E-1 General Site Information

County: San Diego

Representative Area: San Diego MSA

Site Name: Donovan

Year Established: 1/2005 PM₁₀ sampler original site date; Relocated 800 m east on 7/2014

Site Address: Donovan State Prison Rd. (200 m west of Alta Rd.)

Site Name Abbreviation: DVN

AQS Number: 06-073-1014 Latitude: 32.578267 °

Longitude: -116 .921359 °

Elevation above Sea Level: 185 m

General Location: 200 m east of Alta Rd on the Donovan Prison Rd.

Ground Cover: Asphalt

Distance to Road: 26 m north= Donovan Prison Rd.

Traffic Count (2016 AADT):

Donovan Prison Rd. AADT estimated= 300 (No traffic count available)
The closest cross-street with a traffic count, Otay Mesa Rd. at Alta Rd. southwest/downwind 2,100 m = 6,400

southwest/downwind 2,100 in - 0,400

Site Description: This site is situated at the entrance to the Richard J. Donovan Correctional Facility.

This site is primarily used to measure neighborhood scale concentrations in the southeast county. This site is also near the District's International Border Environmental Justice

Monitoring Objectives: county. This Community.

Planned Changes: none

Figure E.1 Donovan – Picture of the Location

Appendix E: Site Description DonovanSite Abbreviation: DVN

Site Abbreviation: DVN AQS# 06-073-1014 Page E-2 of 8

Table E-2 Donovan - Gaseous Pollutants Monitor Designations + Other

Pollutant	O ₃	NO ₂	Other Zero Air	Other Calibrator
POC	1	1	N/A	N/A
Monitor designation	Primary	Primary	N/A	N/A
Parameter code	44201	42602 (NO ₂)	N/A	N/A
Basic monitoring objective	Public Information, NAAQS	Public Information, NAAQS	N/A	N/A
Site type	Population Exposure	Highest Concentration	N/A	N/A
Monitor type	SLAMS	SLAMS	N/A	N/A
Network affiliation	N/A	N/A	N/A	N/A
Instrument manufacturer & model	Thermo 49i	Teledyne-API T500U	Teledyne-API 701H	Teledyne-API T700U
Method code	047	212	N/A	N/A
FRM/FEM/ARM/Other	FEM	FEM	N/A	N/A
Collecting agency	APCD	APCD	APCD	APCD
Analytical laboratory	APCD	APCD	APCD	APCD
Reporting agency	APCD	APCD	APCD	APCD
Spatial scale	Neighborhood Scale	Neighborhood Scale	N/A	N/A
Monitoring start date	7/2014	7/2014	7/2014	2015
Current sampling frequency	Continuous	Continuous	N/A	N/A
Required sampling frequency	Continuous	Continuous	N/A	N/A
Sampling season	Year-round	Year-round	N/A	N/A
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A	N/A
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A	N/A
Probe material for reactive gases	Borosilicate glass	Borosilicate glass	N/A	N/A
Residence time for reactive gases	7.10	7.60	N/A	N/A
Any changes within the next 18 months?	No	Yes	No	No
Suitable for comparison to the NAAQS?	Yes	Yes	N/A	N/A
Frequency of QC check (one-point)	1:1	1:1	1:1	N/A
Annual Performance Evaluation date	03/22/2022	02/23/2022	06/15/2022	N/A
NPAP date	*	*	N/A	N/A

^{*}Not performed this year

Appendix E: Site Description Donovan

Site Abbreviation: DVN AQS# 06-073-1014 Page E-3 of 8

Table E-3 Donovan - Particulate Pollutants Monitor Designations

Pollutant	PM _{2.5} Continuous (non-FEM)	PM _{2.5} Continuous (FEM)	PM ₁₀ Continuous (FEM)	PM ₁₀ Manual (Lo-Vol)	PM ₁₀ Manual (Lo-Vol)	Black Carbon
POC	1	3	3	1	2	1
Monitor designation	Other	Primary	Primary	Primary	Collocated	Other
Parameter code	88502 (LC)	88101 (LC)	81102 (STP)	81102 (STP)*	81102 (STP)*	88313
Basic monitoring objective	Public Information, Research	NAAQS	NAAQS	NAAQS	QAC	Public Information
Site type	Population Exposure	Population Exposure	Population Exposure	Highest Concentration	Highest Concentration	Population Exposure
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation	N/A	N/A	N/A	N/A	N/A	N/A
Instrument manufacturer & model	Met One BAM 1020	Teledyne-API T640x	Teledyne-API T640x	Met One E-SEQ-FRM	Met One E-SEQ-FRM	Met One BC 1060
Method code	733	238	239	246	246	879
FRM/FEM/ARM/Other	Other (non-FEM)	FEM	FEM	FRM	FRM	Other
Collecting agency	APCD	APCD	APCD	APCD	APCD	APCD
Analytical laboratory	APCD	APCD	APCD	APCD	APCD	APCD
Reporting agency	APCD	APCD	APCD	APCD	APCD	APCD
Spatial scale	Population Exposure	Urban Scale	Urban Scale	Neighborhood Scale	Neighborhood Scale	Urban Scale
Monitoring start date	1/2015	8/2/2022	8/2/2022	7/2014	3/2017	7/2021
Current sampling frequency	Continuous	Continuous	Continuous	1:6	1:6	Continuous
Required sampling frequency	Continuous	Continuous	Continuous	1:6	1:12	Continuous
Sampling season	Year-round	Year-round	Year-round	Year-round	Year-round	Year-round
Any PM Lo-Vol sampler w/in 1m	None	None	None	None	None	None
Any PM Hi-Vol sampler w/in 2m	None	None	None	None	None	None
Probe material for reactive gases	N/A	N/A	N/A	N/A	N/A	N/A
Residence time for reactive gases	N/A	N/A	N/A	N/A	N/A	N/A
Any changes within the next 18 months?	Yes	No	No	No	No	No
Suitable for comparison to the NAAQS?	No	Yes	Yes	No	No	No
Frequency of flow rate verification	Semi-monthly	Semi-Monthly	Semi-Monthly	Monthly	Monthly	Monthly
Semi-Annual flow rate audits dates	02/02/2022, 08/02/2022	11/23/2022	11/23/2022	02/02/2022, 08/04/2022	02/02/2022, 08/04/2022	02/03/2022, 11/23/2022
Additional QA flow rate check dates**	04/11/2022, 08/02/2022	08/02/2022, 10/21/2022	08/02/2022, 10/21/2022	05/23/2022, 10/21/2022	05/23/2022, 10/21/2022	N/A
PEP date	***	***	***	***	***	N/A

^{*} Flow checks and operations are in LC and concentration data is in STD

^{**}Additional QA checks are not official audits

^{***} Not performed this year

Appendix E: Site Description DonovanSite Abbreviation: DVN

Site Abbreviation: DVN AQS# 06-073-1014 Page E-4 of 8

Table E-4 Donovan - Other Pollutants Monitor Designations

Pollutant	TOXICS- Metals	TOXICS- Metals	TOXICS- Metals			
POC	1	2	3			
Monitor designation	Primary	Collocated	Not Applicable			
Basic monitoring objective	Research	Research	Research			
Site type	Population Exposure	Population Exposure	Population Exposure			
Monitor type	Other (SDAPCD Network)	Other (SDAPCD Network)	Other (SDAPCD Network)			
Network affiliation	N/A	N/A	N/A			
Instrument manufacturer & model	Xontech 924	Xontech 924	Met One E-SEQ-FRM w/TSP w/oVSCC			
Method code	305	305	*			
FRM/FEM/ARM/Other	Other	Other	Other			
Collecting agency	APCD	APCD	APCD			
Analytical laboratory	APCD	APCD	APCD			
Reporting agency	APCD	APCD	APCD			
Spatial scale	Middle	Middle	Middle			
Monitoring start date	7/2014	7/2014	07/2020			
Current sampling frequency	1:6	1:12	1:6			
Required sampling frequency	1:6	1:12	1:6			
Sampling season	Year-round	Year-round	Year-round			
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	None			
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	None			
Probe material for reactive gases	N/A	N/A	N/A			
Residence time for reactive gases	N/A	N/A	N/A			
Any changes within the next 18 months?	No	No	No			
Suitable for comparison to the NAAQS?	N/A	N/A	N/A			
Frequency of flow rate verification	N/A	N/A	Monthly			
Semi-Annual flow rate audits dates	N/A	N/A	02/02/2022, 08/24/2022			
Additional QA flow rate check dates**	N/A	N/A	04/22/2022, 10/19/2022			
Annual Performance Evaluation date	N/A	N/A	N/A			
NPAP date	N/A	N/A	N/A			

^{*}Method code not available

^{**}Additional QA checks are not official audits

2022 Network Report
Appendix E: Site Description Donovan
Site Abbreviation: DVN
AQS# 06-073-1014 Page E-5 of 8

Table E-5 Donovan – Other Additional Pollutants Monitor Designations

able E-3 Dulluva	n – Other Au	uluonai i onu			
Pollutant	TOXICS- Carbonyls	TOXICS- Carbonyls			
POC	1	2			
Monitor designation	Primary	Collocated			
Basic monitoring objective	Research	Research			
Site type	Population Exposure	Population Exposure			
Monitor type	Other (SDAPCD Network)	Other (SDAPCD Network)			
Network affiliation	N/A	N/A			
Instrument manufacturer & model	Atec 8000	Atec 8000			
Method code	202	202			
FRM/FEM/ARM/Other	Other	Other			
Collecting agency	APCD	APCD			
Analytical laboratory	APCD	APCD			
Reporting agency	APCD	APCD			
Spatial scale	Middle	Middle			
Monitoring start date	2017	2017			
Current sampling frequency	1:6	1:12			
Required sampling frequency	1:6	1:12			
Sampling season	Year-round	Year-round			
Any PM Lo-Vol sampler w/in 1m	N/A	N/A			
Any PM Hi-Vol sampler w/in 2m	N/A	N/A			
Probe material for reactive gases	N/A	N/A			
Residence time for reactive gases	N/A	N/A			
Any changes within the next 18 months?	No	No			
Suitable for comparison to the NAAQS?	N/A	N/A			
Frequency of flow rate verification	N/A	N/A			
Semi-Annual flow rate audits dates	N/A	N/A			
Additional QA flow rate check dates	N/A	N/A			
Annual Performance Evaluation date	N/A	N/A			
NPAP date	N/A	N/A			

Appendix E: Site Description Donovan Site Abbreviation: DVN AQS# 06-073-1014

Page E-6 of 8

Table E-6 Donovan - Meteorological Equipment Monitor Designations + Other

Pollutant	Other Internal Temp	Meteorological Wind Speed	Meteorological Wind Direction	Meteorological External Temp
POC	1	1	1	1
Monitor designation	N/A	N/A	N/A	N/A
Parameter code	62107	61101	61104	62101
Basic monitoring objective	N/A	N/A	N/A	N/A
Site type	N/A	N/A	N/A	N/A
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation	N/A	N/A	N/A	N/A
Instrument manufacturer & model	Qualimetrics 4480	Qualimetrics 2030	Qualimetrics 2020	RM Young 41382VF
Method code	012	050	020	040
FRM/FEM/ARM/Other	Other	Other	Other	Other
Collecting agency	APCD	APCD	APCD	APCD
Analytical laboratory	APCD	APCD	APCD	APCD
Reporting agency	APCD	APCD	APCD	APCD
Spatial scale	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitoring start date	7/2014	7/2014	7/2014	7/2014
Current sampling frequency	Continuous	Continuous	Continuous	Continuous
Required sampling frequency	Continuous	Continuous	Continuous	Continuous
Sampling season	Year-round	Year-round	Year-round	Year-round
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A	N/A
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A	N/A
Probe material for reactive gases	N/A	N/A	N/A	N/A
Residence time for reactive gases	N/A	N/A	N/A	N/A
Any changes within the next 18 months?	No	No	No	No
Suitable for comparison to the NAAQS?	N/A	N/A	N/A	N/A
Frequency of QC check (one-point)	N/A	N/A	N/A	N/A
Annual Performance Evaluation date	11/23/2022	11/23/2022	*	*
NPAP date	N/A	**	**	**

^{*}Not performed this year.

^{* *}The EPA subcontractor does not have the equipment to audit.

Appendix E: Site Description Donovan
Site Abbreviation: DVN
AQS# 06-073-1014 Page E-7 of 8

Table E-7	Dono	van -	- Dist	ance	the E	quip	ment	are f	rom	<u>Influ</u>	ences	5							
(meters)	Gas Inlet	NOy Inlet	Pb-TSP, PRI (44.5 cfm)	Pb-TSP, QAC (44.5 cfm)	PM ₁₀ , PRI (16.7 lpm)	PM ₁₀ , QAC (16.7 lpm)	BC 1060	PM _{2.5} FRM, PRI (16.7 lpm)	E-Seq TSP Metals (16.7 lpm)	PM _{2.5} FEM – T640x (16.7 lpm)	SuperSASS (OCEC)*	PM _{2.5} CSN (22.0 lpm)	† PAMS-VOC (50 ccpm)	† Toxics-Carbonyls, PRI (1.5 lpm)	† Toxics-Carbonyls, QAC, (1.5 lpm)	Toxics-VOC (50 ccpm)	Toxics-VOC, QAC (50 ccpm)	Toxics-Metals (12 lpm)	Meteorology
Gas Inlet	n/a				1.5	1.4	4.6		2.4	1.5	4.1			4.7	4.1				6.9
NOy Inlet																			
Pb-TSP, PRI																			
Pb-TSP, QAC																			
PM ₁₀ , PRI	1.5				n⁄a_	1.1	2.1		3.3	4.0	1.5			6.6	5.9				5.4
PM ₁₀ , QAC	1.4				1.1		3.2		2.6	2.8	2.7			5.5	4.9				6.1
BC 1060	4.6				2.1	3.2			4.4	5.9	1.4			7.9	7.1				5.1
PM _{2.5} FRM, PRI																			
E-Seq TSP Metals	2.4				3.3	2.6	4.4		/	2.5	4.6			3.4	2.7				6.0
PM _{2.5} FEM	1.5				4.0	2.8	5.9		2.5	n⁄a_	5.5			3.4	3.1				7.8
SuperSASS (OC/EC)	4.1				1.5	2.7	1.4		4.6	5.5				8.0	2.7				6.0
PM _{2.5} CSN																			
†PAMS-VOC																			
†Toxics-Carbonyls	4.7				6.6	5.5	7.9		3.4	3.4	8.0				0.9				9.0
†Tox-Carbonyl,QAC	4.1				5.9	4.9	7.1		2.7	3.1	2.7			0.9					8.4
Toxics-VOC																			
Toxics-VOC, QAC																			
Toxics-Metals																			
Meteorology	6.9				5.4	6.1	5.2		6.0	7.8	6.0			9.0	8.4				n/a
height from ground	6.6				6.4	6.4	5.9		6.4	6.7	6.4			6.3	6.2				10.5
distance: from the road	30				32	31	34		30	29	34			27	27				35
from the supporting structure (wood deck)	2.1				2.0	2.0	1.4		2.0	2.3	2.0			5.3	5.2				6.1
from obstructions on roof	N				N	N	N		N	N	N			N	N				N
from obstructions not on roof	N				N	N	N		N	N	N			N	N				N
from the closest tree	N				N	N	N		N	N	N			N	N				N
from furnace/flue	N				N	N	N		N	N	N			N	N				N
unrestricted air flow (degrees)	360				360	360	360		360	360	360			360	360				360

n/a= Not Applicable; N= None; †On the side of the station/trailer *SuperSASS = District's Community Air Protection Program

Appendix E: Site Description Donovan

Site Abbreviation: DVN AQS# 06-073-1014

Page E-8 of 8

Figure E.2 Donovan – Pictures (Directional) from the Rooftop

Appendix F: Kearny Villa Road Station Description

Table F-1 General Site Information

County: San Diego

Representative Area: San Diego MSA

Site Name: Kearny Villa Rd.

Year Established: 11/5/2010

Site Address: 6125A Kearny Villa Rd.

Site Name Abbreviation: KVR

AQS Number: 06-073-1016 Latitude: 32.845722 °

Longitude: -117.123983 ^o

Elevation above Sea Level: 132 m

General Location: Trailer in the SW corner of Camp Elliot (adjacent to Marine Corps Air Station Miramar).

Ground Cover: Asphalt & Packed dirt

Distance to Road: 180 m west= Kearny Villa Rd. 542 m southwest= Ruffin Rd.

Traffic Count

(2016 AADT):

Site Description:

Kearny Villa Rd. at Ruffin Rd = 15,400

When this location housed only a wind profiler, it was originally called Miramar (MMR). In 2010, when the District relocated the Overland station (KMA) alongside the wind profiler for the PAMS program, it was formally re-designated as KVR. The profiler is decommissioned; the station is located on the southeast section of Marine Corps Air Station Miramar (MCAS) called

Camp Elliot.

Monitoring Objectives: It provides representative data for a large area and is quality assurance location for the PM_{2.5}

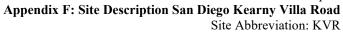
Manual program.

Planned Changes: none

Rearny Villa Road (KVR)

Google earth

Figure F.1 Kearny Villa Road - Picture of the Location


Appendix F: Site Description San Diego Kearny Villa Road

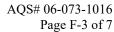

Site Abbreviation: KVR AQS# 06-073-1016 Page F-2 of 7

Table F-2 Kearny Villa Road - Gaseous Pollutants Monitor Designations + Other

Pollutant	O ₃	NO ₂	Other Zero Air	Other Calibrator
POC	1	1	N/A	N/A
Monitor designation	Primary	Primary	N/A	N/A
Parameter code	44201	42602 (NO ₂)	N/A	N/A
Basic monitoring objective	Public Information, NAAQS	Public Information, NAAQS	N/A	N/A
Site type	Population Exposure	Population Exposure	N/A	N/A
Monitor type	SLAMS	SLAMS	N/A	N/A
Network affiliation	N/A	N/A	N/A	N/A
Instrument manufacturer & model	Thermo 49i	Teledyne-API T500U	Teledyne-API 701H	Teledyne-API T700U
Method code	047	212	N/A	N/A
FRM/FEM/ARM/Other	FEM	FEM	N/A	N/A
Collecting agency	APCD	APCD	APCD	APCD
Analytical laboratory	APCD	APCD	APCD	APCD
Reporting agency	APCD	APCD	APCD	APCD
Spatial scale	Neighborhood Scale	Neighborhood Scale	N/A	N/A
Monitoring start date	11/2010	11/2010	11/2010	2015
Current sampling frequency	Continuous	Continuous	N/A	N/A
Required sampling frequency	Continuous	Continuous	N/A	N/A
Sampling season	Year-round	Year-round	N/A	N/A
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A	N/A
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A	N/A
Probe material for reactive gases	Borosilicate glass	Borosilicate glass	N/A	N/A
Residence time for reactive gases	5.53	3.62	N/A	N/A
Any changes within the next 18 months?	No	Yes	No	No
Suitable for comparison to the NAAQS?	Yes	Yes	N/A	N/A
Frequency of QC check (one-point)	1:1	1:1	N/A	N/A
Annual Performance Evaluation date	02/11/2022	02/25/2022	11/08/2022	N/A
NPAP date	2/22/2022	*	N/A	N/A

^{*}Not performed this year

Table F-3 Kearny Villa Road - Particulate Pollutants Monitor Designations

l able F-3 Kearny	villa Road -	rarticulate Pol			
Pollutant	PM _{2.5} Manual	PM _{2.5} Manual			
POC	1	2			
Monitor designation	Primary	Collocated			
Parameter code	88101 (LC)	88101 (LC)			
Basic monitoring objective	NAAQS	NAAQS			
Site type	Population Exposure	QAC			
Monitor type	SLAMS	SLAMS			
Network affiliation	N/A	N/A			
Instrument manufacturer & model	Met One E-SEQ-FRM	Met One E-SEQ-FRM			
Method code	545	545			
FRM/FEM/ARM/Other	FRM	FRM			
Collecting agency	APCD	APCD			
Analytical laboratory	APCD	APCD			
Reporting agency	APCD	APCD			
Spatial scale	Neighborhood Scale	Neighborhood Scale			
Monitoring start date	11/5/2010	11/5/2010			
Current sampling frequency	1:3	1:6			
Required sampling frequency	1:3	1:12			
Sampling season	Year-round	Year-round			
Any PM Lo-Vol sampler w/in 1m	None	None			
Any PM Hi-Vol sampler w/in 2m	None	None			
Probe material for reactive gases	N/A	N/A			
Residence time for reactive gases	N/A	N/A			
Any changes within the next 18 months?	No	No			
Suitable for comparison to the NAAQS?	Yes	Yes			
Frequency of flow rate verification	Monthly	Monthly			
Semi-Annual flow rate audits dates	02/03/2022, /27/2022	02/03/2022, 07/27/2022			
Additional QA flow rate check dates*	05/10/2022, 10/27/2022	05/10/2022, 10/27/2022			
PEP date	5/11/2022	5/11/2022			

^{*}Additional QA checks are not official audits

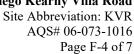


Table F-4 Kearny Villa Road - Meteorological Equipment Designations + Other

bie F-4 Kearny	Villa Road -	Meteorological	I Equipment Designations + Other						
Pollutant	Other Internal Temp	Meteorological Wind Speed	Meteorological Wind Direction	Meteorological External Temp	Meteorological Rel. Humidity				
POC	1	1	1	1	1				
Monitor designation	N/A	N/A	N/A	N/A	N/A				
Parameter code	62107	61101	61104	62101	62201				
Basic monitoring objective	N/A	N/A	N/A	N/A	N/A				
Site type	N/A	N/A	N/A	N/A	N/A				
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS				
Network affiliation	N/A	N/A	N/A	N/A	N/A				
Instrument manufacturer & model	Qualimetrics 4480	Qualimetrics 2030	Qualimetrics 2020	RM Young 41382VF	RM Young 41382VF				
Method code	012	050	020	040	012				
FRM/FEM/ARM/Other	0	0	0	0	0				
Collecting agency	APCD	APCD	APCD	APCD	APCD				
Analytical laboratory	APCD	APCD	APCD	APCD	APCD				
Reporting agency	APCD	APCD	APCD	APCD	APCD				
Spatial scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale				
Monitoring start date	11/5/2010	11/5/2010	11/5/2010	11/5/2010	11/5/2010				
Current sampling frequency	Continuous	Continuous	Continuous	Continuous	Continuous				
Required sampling frequency	Continuous	Continuous	Continuous	Continuous	Continuous				
Sampling season	Year round	Year round	Year round	Year round	Year round				
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A	N/A	N/A				
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A	N/A	N/A				
Probe material for reactive gases	N/A	N/A	N/A	N/A	N/A				
Residence time for reactive gases	N/A	N/A	N/A	N/A	N/A				
Any changes within the next 18 months?	No	No	No	No	No				
Suitable for comparison to the NAAQS?	N/A	N/A	N/A	N/A	N/A				
Frequency of QC check (one-point)	N/A	N/A	N/A	N/A	N/A				
Annual Performance Evaluation date	10/12/2022	11/22/2022	*	10/12/2022	10/12/2022				
NPAP date	N/A	**	**	**	**				

^{*}Not performed this year.

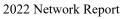

 $^{\ ^*\ ^*\}text{EPA}$ subcontractor does not have the equipment to audit

Table F-5 Kearny Villa Road - Meteorological Equipment (Additional) Designations

`able F-5 Kearny	Villa Road -	Vieteorological			
Pollutant	Barometric Pressure	Solar Radiation			
POC	1	1			
Monitor designation	N/A	N/A			
Parameter code	64101	63301			
Basic monitoring objective	N/A	N/A			
Site type	N/A	N/A			
Monitor type	SLAMS	SLAMS			
Network affiliation	N/A	N/A			
Instrument manufacturer & model	Met One 092	Eppley 8-48			
Method code	014	011			
FRM/FEM/ARM/Other	Other	Other			
Collecting agency	APCD	APCD			
Analytical laboratory	APCD	APCD			
Reporting agency	APCD	APCD			
Spatial scale	Neighborhood Scale	Neighborhood Scale			
Monitoring start date	11/5/2010	11/5/2010			
Current sampling frequency	Continuous	Continuous			
Required sampling frequency	Continuous	Continuous			
Sampling season	Year-round	Year-round			
Any PM Lo-Vol sampler w/in 1m	N/A	N/A			
Any PM Hi-Vol sampler w/in 2m	N/A	N/A			
Probe material for reactive gases	N/A	N/A			
Residence time for reactive gases	N/A	N/A			
Any changes within the next 18 months?	No	No			
Suitable for comparison to the NAAQS?	N/A	N/A			
Frequency of QC check (one-point)	N/A	N/A			
Annual Performance Evaluation date	10/12/2022	11/22/2022			
NPAP date	*	*			

^{*}Not performed this year

Appendix F: Site Description San Diego Kearny Villa Road

Site Abbreviation: KVR AQS# 06-073-1016 Page F-6 of 7

Table F-6 Kearny Villa Road - Distance the Equipment are from Influences

Table F-6 k	Kearn	ıy Vi	lla R	oad -	· Dist	ance	the	Equi	pmei	ıt ar	e froi	m Inf	luen	ces					
(meters)	Gas Inlet	NOy Inlet	Pb-TSP, PRI (44.5 cfm)	Pb-TSP, QAC (44.5 cfm)	PM ₁₀ , PRI (16.7 lpm)	PM _{10,} QAC (16.7 lpm)	BC 1060	PM _{2.5} FRM, PRI (16.7 lpm)	$PM_{2.5}$ FRM, QAC (16.7 lpm)	PM _{2.5} non-FEM (16.7 lpm)	PM _{2.5} STN (6.7 lpm)	PM _{2.5} CSN (22.0 lpm)	† PAMS-VOC (50 ccpm)	† PAMS-VOC, QAC (50 ccpm)	† PAMS-Carbonyls (1.5 lpm)	Toxics-VOC (50 ccpm)	Toxics-VOC, QAC (50 ccpm)	RADNET	Meteorology
Gas Inlet	n/a							2.8	2.0									1.7	7.1
NOy Inlet																			
Pb-TSP, PRI																			
Pb-TSP, QAC																			
PM ₁₀ , PRI																			
PM ₁₀ , QAC																			
BC 1060																			
PM _{2.5} FRM, PRI	2.8							n/a	2.1									4.1	5.9
PM _{2.5} FRM, QAC	2.0							2.1	n⁄a_									2.7	7.2
PM _{2.5} non-FEM																			
PM _{2.5} STN																			
PM _{2.5} CSN																			
†PAMS-VOC																			
†PAMS-VOC, QAC																			
†PAMS-Carbonyls																			
Toxics-VOC																			
Toxics-VOC, QAC																			
RADNET	1.7							4.1	2.7										7.9
Meteorology	7.1							5.9	7.2									7.9	n/a
height from ground	6.1							6.1	6.1									6.6	11.4
distance: from the road	140							142	145									146	139
from the supporting structure (wood deck)	2.1							2.0	2.0									2.5	n/a
from obstructions on roof	N							N	N									N	N
from obstructions not on roof	N							N	N									N	N
from the closest tree	N							N	N									N	N
from furnace/flue	N							N	N									N	N
unrestricted air flow (degrees)	360							360	360									360	360

n/a= Not Applicable; N= None; †On the side of the station/trailer

Appendix F: Site Description San Diego Kearny Villa Road

Site Abbreviation: KVR AQS# 06-073-1016

Page F-7 of 7

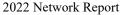


Figure F.2 Kearny Villa Road – Pictures (Directional) from the Rooftop

Site Abbreviation: LES AQS# 06-073-1022 Page G-1 of 10

Appendix G: Lexington Elementary School Station Description

Table G-1 General Site Information

County: San Diego

Representative Area: San Diego MSA

Site Name: El Cajon – Lexington Elementary School

Year Established: 6/2016

Site Address: 533 B. First St.

Site Name Abbreviation: LES

> AOS Number: 06-073-1022 Latitude: 32.789562°

> > Longitude: -116.944318°

Elevation above Sea Level: 143 m

General Location: Trailer on the Lexington Elementary School property off First & Redwood St.

Ground Cover: Cement pad

26.5 m west= First St. Distance to Road:

Traffic Count (2016 AADT):

First St.= 5,700

Site Description:

This station is a trailer off the parking lot for the Lexington Elementary School. This area is primarily residences.

Monitoring Objectives:

The El Cajon site represents a major population center located in an inland valley, downwind of the heavily populated coastal zone. It is impacted from the transportation corridor of Interstate 8 and its major arteries. It is classified as a PAMS and NCore site

Site of equipment for PAMS re-engineering.

Planned Changes:

Not within 18-mon, but there is no room for expansion, the District will research the viability of reclassifying the Escondido site as NCore. Once this is proven and the Escondido site is operational, the District will work with EPA to formalize the relocation process.

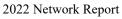
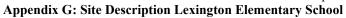




Figure G.1 Lexington Elementary School – Picture of the Location

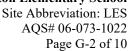


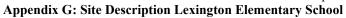
Table G-2 Lexington Elementary School - Gaseous Pollutants Monitor Designations + Other

able G-2 Lexington Elementary School - Gaseous Pollutants Monitor Designations + Othe												
Pollutant	O ₃	CO- TLE	SO ₂ - TLE	NOy- TLE	True-NO2	Other Zero Air	Other Calibrator					
POC	1	1	1	1	2	N/A	N/A					
Monitor designation	Primary	Primary	Primary	Other	Collocated	N/A	N/A					
Parameter code	44201	42101	42401	42612 (NOy-NO ₂)	42602	N/A	N/A					
Basic monitoring objective	Public Information, NAAQS	Public Information, NAAQS	Public Information, NAAQS	Public Information, Research	Public Information, Research	N/A	N/A					
Site type	Population Exposure	Population Exposure	Population Exposure	Population Exposure	Population Exposure	N/A	N/A					
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	N/A	N/A					
Network affiliation	PAMS, NCore	PAMS, NCore	NCore	PAMS, NCore	PAMS, NCore	N/A	N/A					
Instrument manufacturer & model	Thermo 49i	Thermo 48i-TLE	Thermo 43i-TLE	Thermo 42i-y	Teledyne T500U	Teledyne-API 701H	Teledyne-API T700u					
Method code	047	554	560	574	212	N/A	N/A					
FRM/FEM/ARM/Other	FEM	FRM	FEM	Other	FEM	N/A	N/A					
Collecting agency	APCD	APCD	APCD	APCD	APCD	APCD	APCD					
Analytical laboratory	APCD	APCD	APCD	APCD	APCD	APCD	APCD					
Reporting agency	APCD	APCD	APCD	APCD	APCD	APCD	APCD					
Spatial scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale	N/A	N/A					
Monitoring start date	7/2016	7/2016	7/2016	2/2018	9/2020	7/2016	7/2016					
Current sampling frequency	Continuous	Continuous	Continuous	Continuous	Continuous	N/A	N/A					
Required sampling frequency	Continuous	Continuous	Continuous	Continuous	Continuous	N/A	N/A					
Sampling season	Year-round	Year-round	Year-round	Year-round	Year-round	N/A	N/A					
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A	N/A	N/A	N/A	N/A					
Probe material for reactive gases	Borosilicate glass	Borosilicate glass	Borosilicate glass	Borosilicate glass	Borosilicate glass	N/A	N/A					
Residence time for reactive gases	5.21	16.64	17.58	7.18	9.28	N/A	N/A					
Any changes within the next 18 months?	No	No	No	No	No	No	No					
Suitable for comparison to the NAAQS?	Yes	Yes	Yes	Yes	Yes	N/A	N/A					
Frequency of QC check (one-point)	1:1	1:1	1:1	1:1	1:1	N/A	N/A					
Annual Performance Evaluation date	03/25/2022	05/18/2022, 12/20/2022	05/18/2022, 12/13/2022	05/25/2022, 12/07/2022	03/25/2022	*	N/A					
NPAP date	*	*	*	*	*	N/A	N/A					

^{*}Not performed this year.

Site Abbreviation: LES AQS# 06-073-1022

Page G-3 of 10


Table G-3 Lexington Elementary School - Particulate Pollutants Monitor Designations

Pollutant	PM _{2.5} Manual	PM _{2.5} STN	PM _{2.5} CSN	PM ₁₀ Manual (Lo-Vol)	PMcoarse Manual (paired samplers)	PM _{2.5} Continuous (non-FEM)
POC	1	1	1	1	1	1
Monitor designation	Primary	Other	Other	Other	Other	Other
Parameter code	88101 (LC)	See RTI	See RTI	85101 (LC) 81102 (STP)	86101 (LC)	88502 (LC)
Basic monitoring objective	NAAQS	Research	Research	NAAQS	Research	Public Information, Research
Site type	Highest Concentration	Population Exposure	Population Exposure	Population Exposure	Population Exposure	Highest Concentration
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation	NCore	NCore, CSN STN	NCore, CSN STN	NCore	NCore	NCore
Instrument manufacturer & model	Met One E-SEQ-FRM	Met One Super SASS	URG- 3000N	Met One E-SEQ-FRM	Met One E-SEQ-FRM	Met One BAM 1020
Method code	545	See RTI	See RTI	246	247	733
FRM/FEM/ARM/Other	FRM	Other	Other	FRM	Other	Other (non-FEM)
Collecting agency	APCD	APCD	APCD	APCD	APCD	APCD
Analytical laboratory	APCD	EPA	EPA	APCD	APCD	APCD
Reporting agency	APCD	EPA	EPA	APCD	APCD	APCD
Spatial scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale
Monitoring start date	6/2016	6/2016	6/2016	6/2016	6/2016	6/2016
Current sampling frequency	1:3	1:3	1:3	1:3	1:3	Continuous
Required sampling frequency	1:1	1:6	1:6	1:3	1:3	Continuous
Sampling Season	Year-round	Year-round	Year-round	Year-round	Year-round	Year-round
Any PM Lo-Vol sampler w/in 1m	None	None	None	None	None	None
Any PM Hi-Vol sampler w/in 2m	None	None	None	None	None	None
Probe material for reactive gases	N/A	N/A	N/A	N/A	N/A	N/A
Residence time for reactive gases	N/A	N/A	N/A	N/A	N/A	N/A
Any changes within the next 18 months?	No	No	No	No	No	Yes
Suitable for comparison to the NAAQS?	Yes	No	No	Yes	No	No
Frequency of flow rate verification	Monthly	Monthly	Monthly	Monthly	Monthly	Monthly
Semi-Annual flow rate audits dates	05/25/2022, 12/08/2022	06/02/2022, 12/29/2022	06/02/022, 12/29/2022	05/25/2022, 12/08/2022	05/25/2022, 12/13/2022	06/22/2022, 08/11/2022
Additional QA flow rate check dates**	02/02/2022, 08/04/2022	02/02/2022, 08/05/2022	02/03/2022, 08/04/2022	02/03/2022, 08/04/2022	02/02/2022, 08/04/2022	02/04/2022, 08/03/2022, 08/11/2022
PEP date	8/24/2022***, 8/30/2022	N/A	N/A	N/A	N/A	N/A

^{*}Not performed this year

^{**}Additional QA checks are not official audits

^{***}Power loss. Re-set for 8/30/2022

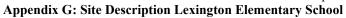

Site Abbreviation: LES AQS# 06-073-1022 Page G-4 of 10

Table G-4 Lexington Elementary School - Particulate Pollutants Monitor Designations (Cont.)

	PM _{2.5}	PM ₁₀	PMcoarse		
Pollutant	Continuous (FEM)	Continuous (FEM)	(FEM Continuous)		
POC	3	3	3		
Monitor designation	Primary	Primary	Primary		
Parameter code	88101 (LC)	81102 (STP) 85101 (LC)	86101 (LC)		
Basic monitoring objective	NAAQS	NAAQS	Research		
Site type	Population Exposure	Population Exposure	Population Exposure		
Monitor type	SLAMS	SLAMS	SLAMS		
Network affiliation	N/A	N/A	NCore		
Instrument manufacturer & model	Teledyne-API T640x	Teledyne-API T640x	Teledyne-API T640x		
Method code	238	239	240		
FRM/FEM/ARM/Other	FEM	FEM	Other		
Collecting agency	APCD	APCD	APCD		
Analytical laboratory	APCD	APCD	APCD		
Reporting agency	APCD	APCD	APCD		
Spatial scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale		
Monitoring start date	8/11/2022	8/11/2022	8/11/2022		
Current sampling frequency	Continuous	Continuous	Continuous		
Required sampling frequency	Continuous	Continuous	Continuous		
Sampling Season	Year-round	Year-round	Year-round		
Any PM Lo-Vol sampler w/in 1m	None	None	None		
Any PM Hi-Vol sampler w/in 2m	None	None	None		
Probe material for reactive gases	N/A	N/A	N/A		
Residence time for reactive gases	N/A	N/A	N/A		
Any changes within the next 18 months?	No	No	No		
Suitable for comparison to the NAAQS?	Yes	Yes	No		
Frequency of flow rate verification	Monthly	Monthly	Monthly		
Semi-Annual flow rate audits dates	12/13/2022	12/13/2022	12/13/2022		
Additional QA flow rate check dates*	08/11/2022	08/11/2022	08/11/2022		
PEP date	N/A	N/A	N/A		

^{*}Additional QA checks are not official audits

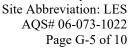
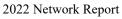
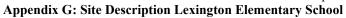




Table G-5 Lexington Elementary School - Other Pollutants Monitor Designations

able G-5 Lexington Elementary School - Other Pollutants										
Pollutant	PAMS- VOC*	PAMS- Carbonyls*	PAMS- Carbonyls*							
POC	TBD	1 for 3-8hr samples	2 for 1-8hr sample							
Monitor designation	Other	Primary	Collocated							
Parameter code	See PAMS Table 10.15	See PAMS Table 10.16	See PAMS Table 10.16							
Basic monitoring objective	Research	Research	Research							
Site type	N/A	N/A	N/A							
Monitor type	SLAMS	SLAMS	SLAMS							
Network affiliation	PAMS	PAMS	PAMS							
Instrument manufacturer & model	Agilent / Markes	Atec 8000	Atec 8000							
Method code	228	202	202							
FRM/FEM/ARM/Other	Other	Other	Other							
Collecting agency	APCD	APCD	APCD							
Analytical laboratory	APCD	APCD	APCD							
Reporting agency	APCD	APCD	APCD							
Spatial scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale							
Monitoring start date	6/2021*	6/2021*	6/2021*							
Current sampling frequency	continuous	1:3	1:6							
Required sampling frequency	continuous	1:3	1:6							
Sampling season	June-August	June-August	June-August							
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A							
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A							
Probe material for reactive gases	N/A	N/A	N/A							
Residence time for reactive gases	N/A	N/A	N/A							
Any changes within the next 18 months?	No	No	No							
Suitable for comparison to the NAAQS?	N/A	N/A	N/A							
Frequency of flow rate verification	N/A	N/A	N/A							
Annual Performance Evaluation date	N/A	N/A	N/A							
NPAP date	N/A	N/A	N/A							

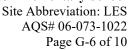
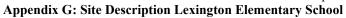
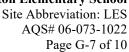



Table G-6 Lexington Elementary School - Other Pollutants Monitor (Additional) Designations

Pollutant	Toxics- Metals	Toxics- Carbonyls	Toxics- Carbonyls
POC	l l	1	2
Monitor designation	Not Applicable	Primary	Collocated
Basic monitoring objective	Research	Research	Research
Site type	N/A	N/A	N/A
Monitor type	SLAMS	SLAMS	SLAMS
Network affiliation	N/A	N/A	N/A
Instrument manufacturer & model	Xonteck 924	Atec 8000	Atec 8000
Method code	305	202	202
FRM/FEM/ARM/Other	Other	Other	Other
Collecting agency	APCD	APCD	APCD
Analytical laboratory	APCD	APCD	APCD
Reporting agency	APCD	APCD	APCD
Spatial scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale
Monitoring start date	7/18/2017	2017	2017
Current sampling frequency	1:6	1:6	1:12
Required sampling frequency	1:6	1:6	1:12
Sampling season	Year-round	Year-round	Year-round
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A
Probe material for reactive gases	N/A	N/A	N/A
Residence time for reactive gases	N/A	N/A	N/A
Any changes within the next 18 months?	No	No	No
Suitable for comparison to the NAAQS?	N/A	N/A	N/A
Frequency of flow rate verification	N/A	N/A	N/A
Annual Performance Evaluation date	N/A	N/A	N/A
NPAP date	N/A	N/A	N/A



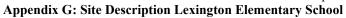


Table G-7 Lexington Elementary School - Meteorological Equipment Monitor Designations + Other

Pollutant	Other Internal Temp	Meteorological Wind Speed	Meteorological Wind Direction	Meteorological External Temp	Meteorological Rel. Humidity
POC	1	1	1	1	1
Monitor designation	N/A	N/A	N/A	N/A	N/A
Parameter code	62107	61101	61104	62101	62201
Basic monitoring objective	N/A	N/A	N/A	N/A	N/A
Site type	N/A	N/A	N/A	N/A	N/A
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation	PAMS, NCore	PAMS, NCore	PAMS, NCore	PAMS, NCore	PAMS, NCore
Instrument manufacturer & model	Qualimetrics 4480	Qualimetrics 2030	Qualimetrics 2020	RM Young 41382VF	RM Young 41382VF
Method code	012	050	020	040	012
FRM/FEM/ARM/Other	Other	Other	Other	Other	Other
Collecting agency	APCD	APCD	APCD	APCD	APCD
Analytical laboratory	APCD	APCD	APCD	APCD	APCD
Reporting agency	APCD	APCD	APCD	APCD	APCD
Spatial scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale
Monitoring start date	7/2016	7/2016	7/2016	7/2016	7/2016
Current sampling frequency	Continuous	Continuous	Continuous	Continuous	Continuous
Required sampling frequency	Continuous	Continuous	Continuous	Continuous	Continuous
Sampling season	Year-round	Year-round	Year-round	Year-round	Year-round
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A	N/A	N/A
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A	N/A	N/A
Probe material for reactive gases	N/A	N/A	N/A	N/A	N/A
Residence time for reactive gases	N/A	N/A	N/A	N/A	N/A
Any changes within the next 18 months?	No	No	No	No	No
Suitable for comparison to the NAAQS?	N/A	N/A	N/A	N/A	N/A
Frequency of QC check (one-point)	N/A	N/A	N/A	N/A	N/A
Annual Performance Evaluation date	*	*	*	*	*
NPAP date	N/A	**	**	**	**

^{*} Not performed this year

^{**}EPA subcontractor does not have the equipment to audit.

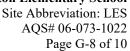


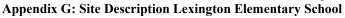


Table G-8 Lexington Elementary School - Meteorological Equipment (Additional) Designations

Pollutant	Meteorological Barometric Press.	Solar Radiation	Ultraviolet Radiation	Rainfall	Ceilometer
POC	1	1	1	1	1
Monitor designation	N/A	N/A	N/A	N/A	N/A
Parameter code	64101	63301	63302	65102	61301
Basic monitoring objective	N/A	N/A	N/A	N/A	N/A
Site type	N/A	N/A	N/A	N/A	N/A
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation	PAMS, NCore	PAMS, NCore	PAMS, NCore	PAMS, NCore	PAMS, NCore
Instrument manufacturer & model	Met One 092	Eppley SPP	Kipp & Zonen SUV5	Met One 370D (8" Rain Gauge)	Vaisala CL-51
Method code	014	011	011	015	128
FRM/FEM/ARM/Other	Other	Other	Other	Other	Other
Collecting agency	APCD	APCD	APCD	APCD	APCD
Analytical laboratory	APCD	APCD	APCD	APCD	APCD
Reporting agency	APCD	APCD	APCD	APCD	APCD
Spatial scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale	Neighborhood Scale
Monitoring start date	03/2017	04/2019	01/2020	10/2019	08/26/2021
Current sampling frequency	Continuous	Continuous	Continuous	Continuous	Continuous
Required sampling frequency	Continuous	Continuous	Continuous	Continuous	Continuous
Sampling season	Year-round	Year-round	Year-round	Year-round	Year Round
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A	N/A	N/A
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A	N/A	N/A
Probe material for reactive gases	N/A	N/A	N/A	N/A	N/A
Residence time for reactive gases	N/A	N/A	N/A	N/A	N/A
Any changes within the next 18 months?	No	No	No	No	No
Suitable for comparison to the NAAQS?	N/A	N/A	N/A	N/A	N/A
Frequency of QC check (one-point)	N/A	N/A	N/A	N/A	N/A
Annual Performance Evaluation date	*	*	*	*	N/A
NPAP date	**	**	**	**	N/A

^{*} Not performed this year

^{**}EPA subcontractor does not have the equipment to audit.


Site Abbreviation: LES
AQS# 06-073-1022

Page G-9 of 10

Table G-9 Lexington Elementary School - Distance the Equipment are from Influences

Table G-9	Lexii	igton	Lien	пента	iry S	CHOOL	- DI	stanc	e me	Ŀqu	ipme	nt ar	e iro	III 1III	nuen	ces			
(meters)	Gas Inlet	NOy Inlet	Pb-TSP, PRI (44.5 cfm)	Pb-TSP, QAC (44.5 cfm)	PM ₁₀ , PRI (16.7 lpm)	PM ₁₀ , QAC (16.7 lpm)	BC 1060	PM _{2.5} FRM, PRI (16.7 lpm)	PM _{2.5} FRM, QAC (16.7 lpm)	PM _{2.5} FEM (T640x) (16.7 lpm)	PM _{2.5} STN (6.7 lpm)	PM _{2.5} CSN (22.0 lpm)	*PAMS-VOC-Auto GC	† PAMS-Carbonyls (Atec 8000)	† PAMS-Carbonyls (Atec 8000) -QAC	Toxics-VOC (50 ccpm)	Toxics-VOC, QAC (50 ccpm)	Toxics-Metals (12 lpm)	Meteorology
Gas Inlet	n/a	3.9			2.3			1.3		2.0	3.3	2.0	2.0	1.7	1.4	1.1		3.2	5.6
NOy Inlet	3.9	n/a			4.8			4.1		4.8	5.8	4.7	4.3	4.7	4.5	4.5		5.6	1.9
Pb-TSP, PRI																			
Pb-TSP, QAC																			
PM ₁₀ , PRI	2.3	4.8			n/a			1.3		1.1	2.8	2.4	3.2	3.4	3.4	3.0		4.0	6.4
PM ₁₀ , QAC																			
BC 1060																			
PM _{2.5} FRM, PRI	1.3	4.1			1.3			n/a		1.8	3.5	2.6	2.9	2.7	2.2	1.8		4.0	5.8
PM _{2.5} FRM, QAC																			
PM _{2.5} FEM	2.0	4.8			1.1			1.8		n/a	1.7	1.2	2.2	2.7	3.1	2.6		2.8	6.3
PM _{2.5} STN	3.3	5.8			2.8			3.5		1.7	n⁄a.	1.4	2.3	3.3	3.8	3.6		2.2	7.2
PM _{2.5} CSN	2.0	4.7			2.4			2.6		1.2	1.4	n⁄a_	1.1	2.0	2.6	2.4		1.7	6.3
*PAMS-VOC	2.0	4.3			3.2			2.9		2.2	2.3	1.1	n/a	1.5	2.4	2.3		1.3	6.0
†PAMS-Carbonyls	1.7	4.7			3.4			2.7		2.7	3.3	2.0	1.5	n⁄a_	1.1	1.1		2.1	6.4
†PAMS-Carbonyls-co	1.4	4.5			3.4			2.2		3.1	3.8	2.6	2.4	1.1	n/a_	1.1		3.1	6.3
Toxics-VOC	1.1	4.5			3.0			1.8		2.6	3.6	2.4	2.3	1.1	1.1	n/a		3.1	6.2
Toxics-VOC, QAC																			
Toxics-Metals	3.2	5.6			4.0			4.0		2.9	2.2	1.7	1.3	2.1	3.1	3.1		n⁄a_	6.9
Meteorology	5.6	1.9			6.4			5.8		6.3	7.2	6.3	6.0	6.3	6.3	6.2		6.9	n⁄a_
height from ground	6.6	10.2			6.5			6.5		6.6	6.4	6.6	6.9	6.0	5.8	5.9		6.6	12.4
distance: from the road	22.9	23.2			22.2			21.8		23.7	24.7	24.5	24.8	23.0	23.4	22.9		24.7	23.4
from the supporting structure (wood deck)	2.2	5.7			2.0			2.0		2.1	2.0	2.2	2.5	6.0	5.8	5.9		2.1	7.9
from obstructions on roof	N	N			N			N		N	N	N	N	N	N	N		N	N
from obstructions not on roof	N	N			N			N		N	N	N	N	N	N	N		N	N
from the closest tree	6.2	9.3			4.1			5.6		4.2	4.2	5.2	6.3	7.0	6.4	6.3		6.5	9.5
unrestricted air flow (degrees)	360	360			360			360		360	360	360	360	360	360	360		360	360

n/a= Not Applicable; N= None; †On the side of the station/trailer. *This is the manifold inlet for the PAMS Auto-GC. (No PAMS canister sampling).

Site Abbreviation: LES AQS# 06-073-1022 Page G-10 of 10

Figure G.2 Lexington Elementary School – Pictures (Directional) from the Rooftop

Site Abbreviation: RCD AQS# 06-073-1017 Page H-1 of 7

Appendix H: Rancho Carmel Drive Station Description

Table H-1 General Site Information

County: San Diego
Representative Area: San Diego MSA

Site Name: Rancho Carmel Drive

Year Established: 3/26/2015

Site Address: 11403 Rancho Carmel Drive

Site Name Abbreviation: RCD

AQS Number: 06-073-1017 Latitude: 32.985442°

Longitude: -117.082180°

Elevation above Sea Level: 218 m

General Location: On City of San Diego Pump Station grounds

Ground Cover: Packed Dirt

Distance to Road: 33 meters to I-15 North; 24 meters to Rancho Carmel Drive

Traffic Count AADT (FE adjusted) for I-15= 332,356 (estimate)

(2020 AADT): 2016 AADT for Rancho Carmel Dr. at Carmel Mtn Rd.(700 meters downwind) = 16,100

Site Description: Is on the hill overlooking I-15. The probe is horizontal.

Monitoring Objectives: This is the 1st near-road site. It measures NO₂, CO, and PM_{2.5} contributions from I-15

Planned Changes: none

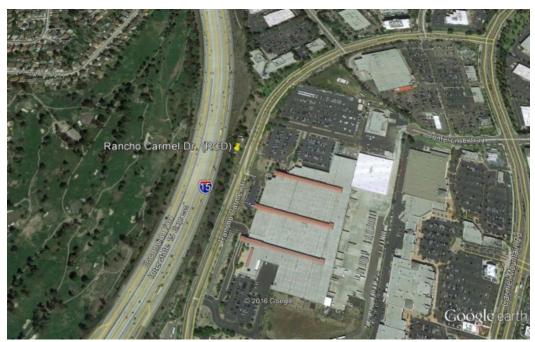
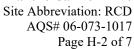
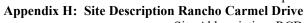
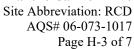



Figure H.1 Rancho Carmel Drive - Picture of the Location of the Station

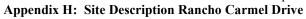



Table H-2 Rancho Carmel Drive - Gaseous Pollutants Monitor Designations + Other

Pollutant	NO ₂	СО	Other Zero Air	Other Calibrator
POC	1	1	N/A	N/A
Monitor designation	Primary	Primary	N/A	N/A
Parameter code	42602 (NO ₂)	42101	N/A	N/A
Basic monitoring objective	Public Information, NAAQS	Public Information, NAAQS	N/A	N/A
Site type	Source Oriented	Source Oriented	N/A	N/A
Monitor type	SLAMS	SLAMS	N/A	N/A
Network affiliation	Near-road	Near-road	N/A	N/A
Instrument manufacturer & model	Teledyne-API T500U	Thermo 48i-TLE *	Teledyne-API 701H	Teledyne-API T700U
Method code	212	554	N/A	N/A
FRM/FEM/ARM/Other	FEM	FRM	N/A	N/A
Collecting agency	APCD	APCD	APCD	APCD
Analytical laboratory	APCD	APCD	APCD	APCD
Reporting agency	APCD	APCD	APCD	APCD
Spatial scale	Micro Scale	Micro Scale	N/A	N/A
Monitoring start date	3/2015	4/2015	3/2015	3/2015
Current sampling frequency	Continuous	Continuous	N/A	N/A
Required sampling frequency	Continuous	Continuous	N/A	N/A
Sampling season	Year-round	Year-round	N/A	N/A
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A	N/A
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A	N/A
Probe material for reactive gases	Borosilicate glass	Borosilicate glass	N/A	N/A
Residence time for reactive gases	5.56	6.84	N/A	N/A
Any changes within the next 18 months?	Yes	No	No	No
Suitable for comparison to the NAAQS?	Yes	Yes	N/A	N/A
Frequency of QC check (one-point)	1:1	1:1	N/A	N/A
Annual Performance Evaluation date	05/03/2022	05/03/2022	05/12/2022	N/A
NPAP Date	**	9/7/2022	N/A	N/A

^{*} Instrument operated at ambient level range of 20 ppm

^{**}Not performed this year



 H-3 Rancho Carmel Drive - Particulate Pollutants Monitor Designations

able H-3 Ranch	o Carmel Dr
Pollutant	PM _{2.5} Manual
POC	1
Monitor designation	Primary
Parameter code	88101 (LC)
Basic monitoring objective	NAAQS
Site type	Source Oriented
Monitor type	SLAMS
Network affiliation	Near-road
Instrument manufacturer & model	Met One E-SEQ-FRM
Method code	545
FRM/FEM/ARM/Other	FRM
Collecting agency	APCD
Analytical laboratory	APCD
Reporting agency	APCD
Spatial scale	Neighborhood Scale
Monitoring start date	06/2019
Current sampling frequency	1:3
Required sampling frequency	1:3
Any PM Lo-Vol sampler w/in 1m	None
Any PM Hi-Vol sampler w/in 2m	None
Probe material for reactive gases	N/A
Residence time for reactive gases	N/A
Any changes within the next 18 months?	No
Suitable for comparison to the NAAQS?	Yes
Frequency of flow rate verification	Monthly
Semi-Annual flow rate audits dates	05/03/2022, 11/23/2022
Additional QA flow rate check dates**	01/06/2022, 07/08/2022, 09/16/2022
PEP date	2/2/2022

^{*}Additional QA checks are not official audits

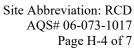
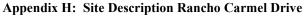



Table H-4 Rancho Carmel Drive - Meteorological Equipment Designations + Other

able H-4 Rancho	Carmei Driv	e - Meteorolog
Pollutant	Other Internal Temp	Meteorological External Temp
POC	1	1
Monitor designation	N/A	N/A
Parameter code	62107	62101
Basic monitoring objective	N/A	N/A
Site type	N/A	N/A
Monitor type	SLAMS	SLAMS
Network affiliation	N/A	N/A
Instrument manufacturer & model	Qualimetrics 4480	RM Young 41382VF
Method code	012	040
FRM/FEM/ARM/Other	Other	Other
Collecting agency	APCD	APCD
Analytical laboratory	APCD	APCD
Reporting agency	APCD	APCD
Spatial scale	Micro-scale	Micro-scale
Monitoring start date	03/2015	03/2015
Current sampling frequency	Continuous	Continuous
Required sampling frequency	Continuous	Continuous
Sampling season	Year-round	Year-round
Any PM Lo-Vol sampler w/in 1m	N/A	N/A
Any PM Hi-Vol sampler w/in 2m	N/A	N/A
Probe material for reactive gases	N/A	N/A
Residence time for reactive gases	N/A	N/A
Any changes within the next 18 months?	No	No
Suitable for comparison to the NAAQS?	N/A	N/A
Frequency of QC check (one-point)	N/A	N/A
Annual Performance Evaluation date	05/12/2022	05/26/2022
NPAP date	N/A	*

^{*}Not performed this year

Site Abbreviation: RCD AQS# 06-073-1017 Page H-5 of 7

Table H-5 Rancho Carmel Drive - Distance the Equipment are from Influences

Table H-5 I	Table H-5 Rancho Carmel Drive - Distance the Equipment are from Influences																		
(meters)	Gas Inlet	NOy Inlet	Pb-TSP, PRI (44.5 cfm)	Pb-TSP , QAC (44.5 cfm)	PM ₁₀ , PRI (16 lpm)	PM ₁₀ , QAC (16 lpm)	BC 1060	PM _{2.5} FRM, PRI (16.7 lpm)***	PM _{2.5} FRM, QAC (16.7 lpm)	PM _{2.5} non-FEM (16.7 lpm)	PM _{2.5} STN (6.7 lpm)	PM _{2.5} CSN (22.0 lpm)	† PAMS-VOC (50 ccpm)	† PAMS-VOC, QAC (50 ccpm)	† PAMS-Carbonyls (1.5 lpm)	† Toxics-VOC (50 ccpm)	† Toxics-VOC, QAC (50 ccpm)	Toxics-Metals (12 lpm)	Meteorology
Gas Inlet	n⁄a_							4.8											
NOy Inlet																			
Pb-TSP, PRI																			
Pb-TSP, QAC																			
PM ₁₀ , PRI																			
PM ₁₀ , QAC																			
BC 1060																			
PM _{2.5} FRM, PRI	4.8																		
PM _{2.5} FRM, QAC																			
PM _{2.5} non-FEM																			
PM _{2.5} STN																			
PM _{2.5} CSN																			
†PAMS-VOC																			
†PAMS-VOC, QAC																			
†PAMS-Carbonyls																			
†Toxics-VOC																/			
†Toxics-VOC, QAC																	/		
Toxics-Metals																			
Meteorology																			
height from ground	2.5							2.0											
distance: from the road	35							22											
from the supporting structure(wall)	**1.3							N											
from obstructions on roof (deck)**	N							N											
from obstructions not on roof	N							N											
from the closest tree	8U 4.6 D							7.9											
from furnace/flue	N							N											
unrestricted air flow (degrees)	270							270											

n/a= Not Applicable; N= None; †On the side of the station/trailer U= upwind; D=downwind

^{**} It is a horizontal probe placed in the direction of the prevailing wind flow. It goes directly from the analyzer inside the station and out the side of the building with a ledge-like support under the glass.

^{***} PM_{2.5} sampler is at street level and on no supporting structure.

Appendix H: Site Description Rancho Carmel Drive

Site Abbreviation: RCD AQS# 06-073-1017 Page H-6 of 7

Figure H.2 Rancho Carmel Drive-Pictures (Directional) from the Ground*

*There is no deck from which to take pictures. The probe is horizontal from the side of station on an incline, so all pictures are taken from behind the stations (about 5 meters behind the probe for safety reasons).

Appendix H: Site Description Rancho Carmel Drive

Site Abbreviation: RCD AQS# 06-073-1017 Page H-7 of 7

Figure H.3 Rancho Carmel Drive-Gas Inlet

Site Abbreviation: CRQ AQS# 06-073-1020

Page I-1 of 4

Appendix I: McClean - Palomar Airport Station Description

Table I-1 General Site Information

County: San Diego

Representative Area: San Diego MSA

Site Name: McClellan-Palomar (Palomar)

Year Established: 3/10/2012 at old location; 11/1/2014 at current location

Site Address: 2192 Palomar Airport Rd.

Site Name Abbreviation: CRQ

AQS Number: 06-073-1023 Latitude: 33.130822 °

Longitude: -117.272686°

Elevation above Sea Level: 92 m

General Location: Adjacent to the business park (immediately north of the paved access road)

Ground Cover: Paved

Distance to Road: 380 m east= El Camino Real

Traffic Count (2016 AADT):

El Camino Real at Palomar Airport Rd. (27,300)

Site Description: Adjacent to business park.

In 2014, the samplers were moved from the blast shield area to the current location. There is an auxiliary Airport only access road about 3 meters from the samplers with an AADT= 8; because of this low traffic count, the El Camino Real Drive AADT was used. Additionally, the

measurements from the road used El Camino Real Drive.

Monitoring Objectives: To quantify airborne lead particulates from the combustion of aviation gasoline.

Planned Changes: In 2017, site was being petitioned by the District to the EPA for decommissioning.

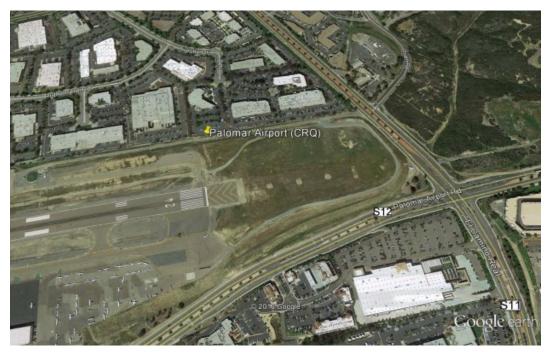
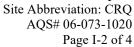



Figure I.1 Palomar Airport – Picture of the Location

Table I-2 Palomar Airport – Particulate Pollutants Monitor Designations

Pollutant	Pb-TSP Hi-Vol (primary)	Pb-TSP Hi-Vol (collocated)
POC	1	2
Monitor designation	PRI	QAC
Parameter code	14129	14129
Basic monitoring objective	NAAQS	NAAQS
Site type	Source Oriented	Source Oriented
Monitor type	SLAMS	SLAMS
Network affiliation	N/A	N/A
Instrument manufacturer & model	Tisch TE-5170BLVFC+	Tisch TE-5170BLVFC+
Method code	192	192
FRM/FEM/ARM/Other	FRM	FRM
Collecting agency	APCD	APCD
Analytical laboratory	APCD	APCD
Reporting agency	APCD	APCD
Spatial scale	Micro Scale	Micro Scale
Monitoring start date	3/10/2012 (old site) 11/1/2014 (current site)	3/10/2012 (old site) 11/1/2014 (current site)
Current sampling frequency	1:6	1:12
Required sampling frequency	1:6	1:12
Sampling season	Year-round	Year-round
Any PM Lo-Vol sampler w/in 1m	N/A	N/A
Any PM Hi-Vol sampler w/in 2m	N/A	N/A
Probe material for reactive gases	N/A	N/A
Residence time for reactive gases	N/A	N/A
Any changes within the next 18 months?	Yes	Yes
Suitable for comparison to the NAAQS?	Yes	Yes
Frequency of flow rate verification	Monthly	Monthly
Semi-Annual flow rate audits dates	03/16/2022, 09/28/2022	03/16/2022, 09/28/2022
Additional QA flow rate check dates*	06/29/2022, 12/09/2022	06/29/2022, 12/09/2022
PEP date	9/8/2022	9/8/2022
rer date	9/0/2022	7/0/2022

^{*} Additional QA checks are not official audits

Appendix I: Site Description McClellan-Palomar Airport

Site Abbreviation: CRQ AQS# 06-073-1020 Page I-3 of 4

Table I-3 Palomar Airport - Distance the Equipment are from Influences																			
(meters)	Gas Inlet	NOy Inlet	Pb-TSP, PRI (44.5 cfm)	Pb-TSP, QAC (44.5 cfm)	PM ₁₀ , PRI (16 lpm)	PM ₁₀ , QAC (16 lpm)	BC 1060	PM _{2.5} FRM, PRI (16.7 lpm)	PM _{2.5} FRM, QAC (16.7 lpm)	PM _{2.5} non-FEM (16.7 lpm)	PM _{2.5} STN (6.7 lpm)	PM _{2.5} CSN (22.0 lpm)	† PAMS-VOC (50 ccpm)	† PAMS-VOC, QAC (50 ccpm)	† PAMS-Carbonyls (1.5 lpm)	† Toxics-VOC (50 ccpm)	† Toxics-VOC QAC (50 ccpm)	Toxics-Metals (12 lpm)	Meteorology
Gas Inlet																			
NOy Inlet																			
Pb-TSP, PRI			n⁄a_	3.0															
Pb-TSP, QAC			3.0	n/a															
PM ₁₀ , PRI																			
PM ₁₀ , QAC																			
BC 1060																			
PM _{2.5} FRM, PRI																			
PM _{2.5} FRM, QAC																			
PM _{2.5} non-FEM																			
PM _{2.5} STN																			
PM _{2.5} CSN																			
†PAMS-VOC																			
†PAMS-VOC QAC																			
†PAMS-Carbonyls																			
†Toxics-VOC																			
†Toxics-VOC, QAC																			
Toxics-Metals																			
Meteorology																			
height from ground			2.3	2.3															
distance: from the road			313	317															
from the supporting structure			1.2	1.2															
from obstructions on roof			N	N															
from obstructions not on roof			N	N															
from the closest tree			28.8	28.8															
from furnace/flue			N	N															
unrestricted air flow (degrees)			360	360															

n/a= Not Applicable; N= None; †On the side of the station/trailer

Appendix I: Site Description McClellan-Palomar AirportSite Abbreviation: CRQ

AQS# 06-073-1020 Page I-4 of 4

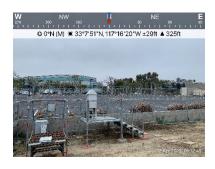


Figure I.2 Palomar Airport – Pictures (Directional) from the Ground*

*The sampler is situated at ground level

AOS# 06-073-1026

Site Abbreviation: SES

Page J-1 of 7

Appendix J: Sherman Elementary School Station Description

Table J-1 General Site Information

County: San Diego

Representative Area: San Diego MSA

Site Name: Sherman Elementary School

2019

450B 24th St. Site Address:

Site Name Abbreviation: SES

> AQS Number: 06-073-1026 Latitude: 32.710177^o

> > Longitude: -117.142665^o

Elevation above Sea Level: 35 m

General Location: At the junction of SR 94 and I-5 and downwind of Downtown San Diego and the Bay

Ground Cover: Paved

14 m east= 24th Street; 281 m NE= Market St & 25 St Distance to Road:

Traffic Count (2016 AADT):

Market St. & 25 St.= 12,600

Site Description:

This site is downwind of the San Diego Bay industrial zone, and captures emissions from Interstates 5, 805, 15 and SR 94, downtown San Diego, Lindbergh Field, North Island Naval Air Station, marine terminals, NASSCO shipyards, Continental Maritime shipyard, Southwest

Marine, and train yards.

Monitoring Objectives:

This site is in an Environmental Justice area. Forecasting of PM_{2.5} levels for several monitoring sites (from Chula Vista to Kearny Mesa) is partially based upon the values collected at this site. This location is useful for capturing high NO₂ concentrations, and assessing ozone transport from the south (Baja, Mexico).

None Planned Changes:

Figure J.1 Sherman Elementary School – Picture of the Location

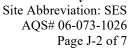


Table J-2 Sherman Elementary School - Gaseous Pollutants Monitor Designations + Other

Pollutant	O ₃	True-NO2	Other Zero Air	Other Calibrator
POC	1	2	N/A	N/A
Monitor designation	Primary	Collocated	N/A	N/A
Parameter code	44201	42602	N/A	N/A
Basic monitoring objective	Public Information, NAAQS	Public Information, Research	N/A	N/A
Site type	Population Exposure	Population Exposure	N/A	N/A
Monitor type	SLAMS	SLAMS	N/A	N/A
Network affiliation	N/A	Area-wide	N/A	N/A
Instrument manufacturer & model	Thermo 49i	Teledyne-API T500U	Teledyne-API 701H	Teledyne-API T700U
Method code	047	212	N/A	N/A
FRM/FEM/ARM/Other	FEM	FEM	N/A	N/A
Collecting agency	APCD	APCD	APCD	APCD
Analytical laboratory	APCD	APCD	APCD	APCD
Reporting agency	APCD	APCD	APCD	APCD
Spatial scale	Neighborhood Scale	Neighborhood Scale	N/A	N/A
Monitoring start date	07/2019	06/30/2021	08/2019	08/2019
Current sampling frequency	Continuous	Continuous	N/A	N/A
Required sampling frequency	Continuous	Continuous	N/A	N/A
Sampling season	Year-round	Year-round	N/A	N/A
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A	N/A
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A	N/A
Probe material for reactive gases	Borosilicate glass	Borosilicate glass	N/A	N/A
Residence time for reactive gases	6.58	4.09	N/A	N/A
Any changes within the next 18 months?	No	No	No	No
Suitable for comparison to the NAAQS?	Yes	Yes	N/A	N/A
Frequency of QC check (one-point)	1:1	1:1	N/A	N/A
Annual Performance Evaluation date	06/24/2022	06/29/2022	08/03/2022	N/A
NPAP date	*	*	N/A	N/A

^{*}Not done this year

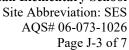


Table J-3 Sherman Elementary School - Particulate Pollutants Monitor Designations

lable J-3 Sherma	in Elementai	ry School - Pai	rticulate Pollu	tants Monitor
Pollutant	PM _{2.5} Manual	PM _{2.5} Continuous (non-FEM)	PM _{2.5} Continuous (FEM)	PM ₁₀ Continuous (FEM)
POC	1	1	3	3
Monitor designation	Primary	Other	Primary	Primary
Parameter code	88101 (LC)	88502 (LC)	88101 (LC)	88102 (STP)
Basic monitoring objective	NAAQS	PI, Research	NAAQS	NAAQS
Site type	Population Exposure	Population Exposure	Population Exposure	Population Exposure
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation	Not Applicable	Not Applicable	N/A	N/A
Instrument manufacturer & model	Met One E-SEQ-FRM	Met One BAM 1020	Teledyne-API T640x	Teledyne-API T640x
Method code	545	733	238	239
FRM/FEM/ARM/Other	FRM	Other (non-FEM)	FEM	FEM
Collecting agency	APCD	APCD	APCD	APCD
Analytical laboratory	APCD	APCD	APCD	APCD
Reporting agency	APCD	APCD	APCD	APCD
Spatial scale	Neighborhood Scale	Population Exposure	Neighborhood Scale	Neighborhood Scale
Monitoring start date	01/2020	08/2019	5/16/2022	5/16/2022
Current sampling frequency	1:3	Continuous	Continuous	Continuous
Required sampling frequency	1:3	Continuous	Continuous	Continuous
Any PM Lo-Vol sampler w/in 1m	None	None	Year-round	Year-round
Any PM Hi-Vol sampler w/in 2m	None	None	None	None
Probe material for reactive gases	N/A	None	None	None
Residence time for reactive gases	N/A	N/A	N/A	N/A
Any changes within the next 18 months?	No	Yes	N/A	N/A
Suitable for comparison to the NAAQS?	Yes	No	Yes	Yes
Frequency of flow rate verification	Monthly	Semi-monthly	Semi-monthly	Semi-Monthly
Semi-Annual flow rate audits dates	06/08/2022, 12/27/2022	05/16/2022	08/10/2022, 12/27/2022	08/10/2022, 12/27/2022
Additional QA flow rate check dates*	03/17/2022, 09/15/2022	03/30/2022	05/16/2022, 09/27/2022	05/16/2022, 09/27/2022
PEP date	**	N/A	**	**

^{*}Additional QA checks are not official audits

^{**}Not done this year



Table J-4 Sherman Elementary School - Other Pollutants Monitor Designations

able J-4 Sherma	n Elementary	School - Oth
Pollutant	TOXICS- VOC	TOXICS- Metals
POC	1	1
Monitor designation	N/A	N/A
Basic monitoring objective	Research	Research
Site type	Population Exposure	Population Exposure
Monitor type	Other (SDAPCD Network)	Other (SDAPCD Network)
Network affiliation	N/A	N/A
Instrument manufacturer & model	Xontech 901 (Fused Silica Lined)	Met One E-SEQ-FRM
Method code	210	*
FRM/FEM/ARM/Other	Other	Other
Collecting agency	APCD	APCD
Analytical laboratory	APCD	APCD
Reporting agency	APCD	APCD
Spatial scale	Neighborhood Scale	Neighborhood Scale
Monitoring start date	N/A	07/2020
Current sampling frequency	1:6	1:6
Required sampling frequency	N/A	N/A
Sampling season	Year-round	Year-round
Any PM Lo-Vol sampler w/in 1m	N/A	None
Any PM Hi-Vol sampler w/in 2m	N/A	None
Probe material for reactive gases	N/A	N/A
Residence time for reactive gases	N/A	N/A
Any changes within the next 18 months?	No	No
Suitable for comparison to the NAAQS?	N/A	N/A
Frequency of flow rate verification	N/A	Monthly
Semi-Annual flow rate audits dates	N/A	06/08/2022, 12/27/2022
Additional QA flow rate check dates***	N/A	03/17/2022, 09/15/2022
Annual Performance Evaluation date	N/A	N/A
NPAP date	N/A	N/A

^{*}Method code not available

^{**}Additional QA checks are not official audits

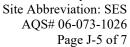


Table J-5 Sherman Elementary School - Meteorological Equipment Designations + Other

Pollutant	Other Internal Temp	Meteorological Wind Speed	Meteorological Wind Direction	Meteorological External Temp
POC	1	1	1	1
Monitor designation	N/A	N/A	N/A	N/A
Parameter code	62107	61101	61104	62101
Basic monitoring objective	N/A	N/A	N/A	N/A
Site type	N/A	N/A	N/A	N/A
Monitor type	SLAMS	SLAMS	SLAMS	SLAMS
Network affiliation	N/A	N/A	N/A	N/A
Instrument manufacturer & model	Qualimetrics 4480	Qualimetrics 2030	Qualimetrics 2020	RM Young 41382VF
Method code	012	050	020	040
FRM/FEM/ARM/Other	Other	Other	Other	Other
Collecting agency	APCD	APCD	APCD	APCD
Analytical laboratory	APCD	APCD	APCD	APCD
Reporting agency	APCD	APCD	APCD	APCD
Spatial scale	Neighborhood	Neighborhood	Neighborhood	Neighborhood
Monitoring start date	07/2019	07/2019	07/2019	07/2019
Current sampling frequency	Continuous	Continuous	Continuous	Continuous
Required sampling frequency	Continuous	Continuous	Continuous	Continuous
Sampling season	Year-round	Year-round	Year-round	Year-round
Any PM Lo-Vol sampler w/in 1m	N/A	N/A	N/A	N/A
Any PM Hi-Vol sampler w/in 2m	N/A	N/A	N/A	N/A
Probe material for reactive gases	N/A	N/A	N/A	N/A
Residence time for reactive gases	N/A	N/A	N/A	N/A
Any changes within the next 18 months?	No	No	No	No
Suitable for comparison to the NAAQS?	N/A	N/A	N/A	N/A
Frequency of QC check (one-point)	Monthly	N/A	N/A	Monthly
Annual Performance Evaluation date	07/29/2022	07/29/2022	*	07/29/2022
NPAP date	N/A	**	**	**

^{*}Not performed this year.

^{* *}EPA subcontractor does not have the equipment to audit.

Appendix J: Site Description Sherman Elementary School Site Abbreviation: SES

AQS# 06-073-1026 Page J-6 of 7

Table J-6 Sl	herm	an E	lemei	ntary	Scho	ol - 1	Dista	nce tl	he Ec	uipn	ient a	are fr	om I	nflue	nces				
(meters)	Gas Inlet	NOy Inlet	Pb-TSP, PRI (44.5 cfm)	Pb-TSP, QAC (44.5 cfm)	PM ₁₀ , PRI, (16.7 lpm)	PM ₁₀ , QAC (16.7 lpm)	BC 1060	PM _{2.5} FRM, PRI* (16.7 lpm)	E-Seq TSP Metals (16.7 lpm)	PM _{2.5} non-FEM (16.7 lpm)	PM _{2.5} STN (6.7 lpm)	PM _{2.5} CSN (22.0 lpm)	† PAMS-VOC (50 ccpm)	† PAMS-VOC, QAC	† PAMS-Carbonyls (1.5 lpm)	Toxics-VOC (50 ccpm)	Toxics-Carbonyls (50 ccpm)	Toxics-Metals (12 lpm)	Meteorology
Gas Inlet	n/a							2.2	3.6	1.3							3.2		5.2
NOy Inlet																			
Pb-TSP, PRI																			
Pb-TSP, QAC																			
PM ₁₀ , PRI, Hi-Vol																			
PM ₁₀ , QAC, Hi-Vol																			
BC 1060																			
PM _{2.5} FRM, PRI*	2.2							n/a_	1.6	1.2							2.0		6.4
E-Seq TSP Metals	3.6							1.6	n/a_	2.3							3.3		7.2
PM _{2.5} non-FEM	1.3							1.2	2.3	n/a_							2.9		5.7
PM _{2.5} STN																			
PM _{2.5} CSN																			
†PAMS-VOC																			
†PAMS-VOC, QAC																			
†PAMS-Carbonyls																			
Toxics-VOC																			
Toxics-Carbonyls	3.2							2.0	3.3	2.9									7.2
Toxics-Metals																			
Meteorology	5.2							6.4	7.2	5.7							7.2		n/a
height from ground	6.1							5.9	6.0	6.0							6.3		11.0
distance: from the road	14.5							15.8	16.6	14.7							16.7		15.5
from the supporting structure (wood deck)	2.2							2.0	2.0	2.1							3.7		7.05
from obstructions on roof	N							N	N	N							N		N
from obstructions not on roof	N							N	N	N							N		N
from the closest tree	14.8							16.1	17.8	14.4							16.8		14.0
from furnace/flue	N							N	N	N							N		N
unrestricted air flow (degrees)	360							360	360	360							360		360

n/a= Not Applicable; N= None; †On the side of the station/trailer

Site Abbreviation: SES AQS# 06-073-1026

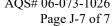


Figure J.2 Sherman Elementary – Pictures (Directional) form the rooftop